Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.
К тригонометрическим функциям традиционно причисляют:
- прямые тригонометрические функции:
- синус ();
- косинус ();
- производные тригонометрические функции:
- тангенс ;
- котангенс ;
- секанс ;
- косеканс ;
- арксинус, арккосинус и т. д.
В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются , , . До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[2], но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.
Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).
Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках , а у котангенса и косеканса — в точках .
Графики тригонометрических функций показаны на рис. 1.
Способы определения Править
Определение для любых углов Править
Обычно тригонометрические функции определяются геометрически[3]. В декартовой системе координат на плоскости построим окружность единичного радиуса ( ) с центром в начале координат . Всякий угол станем рассматривать как поворот от положительного направления оси абсцисс до некоторого луча (точку выбираем на окружности), при этом направление поворота против часовой стрелки считаем положительным, а по часовой стрелке — отрицательным. Абсциссу точки обозначим , а ординату — (см. рисунок 2).
Синусом угла называется ордината точки единичной окружности, где получается поворотом на угол в положительном направлении (против часовой стрелки), если , и в отрицательном (по часовой стрелке), если .
Косинусом угла называется абсцисса точки единичной окружности, где получается поворотом на угол в положительном направлении (против часовой стрелки), если , и в отрицательном (по часовой стрелке), если .
Тангенсом угла называется отношение ординаты точки единичной окружности к её абсциссе, причём точка не принадлежит оси ординат.
Котангенсом угла называется отношение абсциссы точки единичной окружности к её ординате, причём точка не принадлежит оси абсцисс.[4]
Таким образом, определения тригонометрических функций выглядят следующим образом:
- , ;
- , ;
- , .
Нетрудно видеть, что такое определение также основывается на отношениях прямоугольного треугольника, с тем отличием, что учитывается знак ( ). Поэтому тригонометрические функции можно определить и по окружности произвольного радиуса , однако формулы придётся нормировать. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.
В тригонометрии удобным оказывается вести счёт углов не в градусной мере, а в радианной. Так, угол в запишется длиной единичной окружности . Угол в равен, соответственно и так далее. Заметим, что угол на отличающийся от по рисунку эквивалентен , вследствие чего заключим, что тригонометрические функции периодичны.
Наконец, определим тригонометрические функции вещественного числа тригонометрическими функциями угла, радианная мера которого равна .
Определение для острых углов Править
В геометрии тригонометрические функции острого угла определяются отношениями сторон прямоугольного треугольника[5]. Пусть — прямоугольный (угол прямой), с острым углом и гипотенузой . Тогда:
- (синусом угла называется отношение противолежащего катета к гипотенузе). Синус можно рассматривать как "коэффициент сжатия" длины отрезка при наблюдении за ним под углом, т.е. насколько укорачивается проекция отрезка при его наклоне на определенный угол; sinus (лат) означает «изгиб, складка»[6].
- (косинусом угла называется отношение прилежащего катета к гипотенузе);
- (тангенсом угла называется отношение противолежащего катета к прилежащему); tangens (лат)- касательная.
- (котангенсом угла называется отношение прилежащего катета к противолежащему);
- (секансом угла называется отношение гипотенузы к прилежащему катету) ;secans (лат) -секущая.
- (косекансом угла называется отношение гипотенузы к противолежащему катету).
Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).
Определение как решений дифференциальных уравнений Править
Синус и косинус можно определить как единственные функции, вторые производные которых равны самим функциям, взятым со знаком минус:
То есть задать их как чётное (косинус) и нечётное (синус) решения дифференциального уравнения
с дополнительными условиями: для косинуса и для синуса.
Определение как решений функциональных уравнений Править
Функции косинус и синус можно определить[7] как решения ( и соответственно) системы функциональных уравнений:
при дополнительных условиях:
и при .
Определение через ряды Править
Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:
Пользуясь этими формулами, а также равенствами и можно найти разложения в ряд и других тригонометрических функций:
где
- — числа Бернулли,
- — числа Эйлера.
Значения тригонометрических функций для некоторых углов Править
Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. (« » означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).
Радианы | ||||||||
---|---|---|---|---|---|---|---|---|
Градусы | ||||||||
Значения тригонометрических функций нестандартных углов Править
Радианы | |||||||||
---|---|---|---|---|---|---|---|---|---|
Градусы | |||||||||
Радианы | ||||||||
---|---|---|---|---|---|---|---|---|
Градусы | ||||||||
Свойства тригонометрических функций Править
Простейшие тождества Править
Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности ( ) или теореме Пифагора, имеем:
Это соотношение называется основным тригонометрическим тождеством.
Разделив это уравнение на квадрат косинуса и синуса соответственно, получим:
Из определения тангенса и котангенса следует, что
Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для :
sin | cos | tg | ctg | sec | cosec | |
---|---|---|---|---|---|---|
Непрерывность Править
- Синус и косинус — непрерывные функции.
- Тангенс и секанс имеют точки разрыва , где — любое целое.
- Котангенс и косеканс имеют точки разрыва , где — любое целое.
Чётность Править
Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:
Периодичность Править
Функции — периодические с периодом , функции и — c периодом .
Формулы приведения Править
Формулами приведения называются формулы следующего вида:
Здесь — любая тригонометрическая функция, — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол острый, например:
- или что то же самое:
Некоторые формулы приведения:
Интересующие формулы приведения так же могут легко быть получены рассмотрением функций на единичной окружности.
Формулы сложения и вычитания Править
Значения тригонометрических функций суммы и разности двух углов:
Аналогичные формулы для суммы трёх углов:
Формулы для кратных углов Править
Формулы двойного угла:
Формулы тройного угла:
Прочие формулы для кратных углов:
- следует из формулы дополнения и формулы Гаусса для гамма-функции.
Из формулы Муавра можно получить следующие общие выражения для кратных углов:
где — целая часть числа , — биномиальный коэффициент.
Формулы половинного угла:
Произведения Править
Формулы для произведений функций двух углов:
Аналогичные формулы для произведений синусов и косинусов трёх углов:
Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.
Степени Править
Суммы Править
Существует представление:
где угол находится из соотношений:
Универсальная тригонометрическая подстановка Править
Все тригонометрические функции можно выразить через тангенс половинного угла:
Исследование функций в математическом анализе Править
Разложение в бесконечные произведения Править
Тригонометрические функции могут быть представлены в виде бесконечного произведения многочленов:
Эти соотношения выполняются при любом значении .
Непрерывные дроби Править
Разложение тангенса в непрерывную дробь:
Производные и первообразные Править
Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:
Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом[8]:
Тригонометрические функции комплексного аргумента Править
Определение Править
Формула Эйлера позволяет определить тригонометрические функции от комплексных аргументов через экспоненту по аналогии с гиперболическими функциями, или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:
- где
Соответственно, для вещественного x:
Комплексные синус и косинус тесно связаны с гиперболическими функциями:
Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:
- комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;
- все нули комплексных синуса и косинуса лежат на вещественной оси.
Комплексные графики Править
На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.
История названий Править
Линия синуса (линия на рис. 2) у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды данной дуги, поскольку дуга с хордой напоминает лук с тетивой). Затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские математики, переводя индийские книги с санскрита, не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали его арабскими буквами и стали называть линию синуса «джиба» (جيب). Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus — «синус», имеющим то же значение (именно в этом значении оно применяется как анатомический термин синус). Термин «косинус» (лат. cosinus) — это сокращение от лат. complementi sinus — дополнительный синус.
Современные краткие обозначения , введены Уильямом Отредом и Бонавентурой Кавальери и закреплены в трудах Леонарда Эйлера.
Термины «тангенс» (лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке в его книге «Геометрия круглого» (Geometria rotundi, 1583).
Сам термин тригонометрические функции введён Клюгелем в 1770 году.
Позднее были введены и термины для обратных тригонометрических функций — арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс — с помощью добавления приставки «арк» (от лат. arcus — дуга), — Ж. Лагранжем и др.
См. также Править
- Гиперболические функции
- Интегральный синус
- Интегральный косинус
- Интегральный секанс
- Обратные тригонометрические функции
- Редко используемые тригонометрические функции
- Решение треугольников
- Синус-верзус
- Сферическая тригонометрия
- Тригонометрические тождества
- Тригонометрические функции от матрицы
- Тригонометрический ряд Фурье
- Функция Гудермана
- Четырёхзначные математические таблицы (Таблицы Брадиса)
- Эллиптические функции
Литература Править
- Бермант А. Ф., Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
- Тригонометрические функции — статья из Большой советской энциклопедии. — М.: Советская энциклопедия, 1977. — Т. 26. — С. 204—206.
- Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
- Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
- Переиздание: М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6 www.alleng.ru/d/math/math42.htm
- Двайт Г. Б. Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
- Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
- Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.
- Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. — И. М. Виноградов. Тригонометрические функции // Математическая энциклопедия. — М.: Советская энциклопедия (рус.). — 1977—1985.
- Тригонометрические функции // Энциклопедический словарь юного математика / Ред. коллегия, Гнеденко Б. В. (гл. ред.), Савин А. П. и др. — М.: Педагогика, 1985 (1989). — С. 299—301—305. — 352 с., ил. — ISBN 5-7155-0218-7 (С. 342, 343 — таблицы тригонометрических функций 0°-90°, в том числе в радианах)
- Тригонометрические функции // Справочник по математике (для ср. уч. заведений) / Цыпкин А. Г., под ред. Степанова С. А. — 3-е изд. — М.: Наука, Гл. редакция физ.-мат. литературы, 1983. — С. 240—258. — 480 с.
Ссылки Править
- GonioLab — прояснённая единичная окружность, тригонометрические и гиперболические функции (Java Web Start)
- Weisstein, Eric W. Trigonometric Functions (англ.) на сайте Wolfram MathWorld.
- Онлайн калькулятор: вычисление значений тригонометрических функций (в том числе нахождение углов треугольника по сторонам)
- Интерактивная карта значений тригонометрических функций
- Тригонометрические таблицы (0° — 360°)
- «Синус и косинус — это проценты» — перевод статьи How To Learn Trigonometry Intuitively | BetterExplained (англ.)
Примечания Править
- ↑ Справочник: Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с. Архивная копия от 19 января 2015 на Wayback Machine относит их к специальным функциям.
- ↑ Знак математический. // Большая советская энциклопедия. 1-е изд. Т. 27. — М., 1933.
- ↑ Справочник по элементарной математике, 1978, с. 282—284.
- ↑ Шахмейстер А. Х. Определение основных тригонометрических функций // Тригонометрия : [рус.] : книга / А. Х. Шахмейстер; под ред. Б. Г. Зива. — 3-е изд., стереотипное. — М. : Издательство МЦНМО ; СПб. : «Петроглиф» : «Виктория плюс», 2013. — С. 11, 14, 18, 20. — 752 с. : илл. — (Математика. Элективные курсы). — 1500 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-4439-0050-6. — ISBN 978-5-98712-042-2. — ISBN 978-5-91673-097-5.
- ↑ Справочник по элементарной математике, 1978, с. 271—272.
- ↑ Латинско-русский словарь (неопр.). Дата обращения: 9 апреля 2023.
- ↑ Ильин В. А., Позняк Э. Г. Основы математического анализа. Ч. 1. — М.: Наука, 1998. — ISBN 5-02-015231-5.
- ↑ В формулах, содержащих логарифм в правой части равенств, константы интегрирования , вообще говоря, различны для различных интервалов непрерывности.