Это не официальный сайт wikipedia.org 01.01.2023

Теорема Тейлора — Википедия

Теорема Тейлора

Теорема Тейлора даёт приближение к функции, дифференцируемой k раз, вблизи данной точки с помощью многочлена Тейлора k-го порядка. Для аналитических функций многочлен Тейлора в данной точке является частичной суммой их ряда Тейлора, который, в свою очередь, полностью определяет функцию в некоторой окрестности точки. Точное содержание теоремы Тейлора до настоящего времени не согласовано. Конечно, существует несколько версий теоремы, применимых в различных ситуациях, и некоторые из этих версий содержат оценки ошибки, возникающей при приближении функции с помощью многочлена Тейлора.

Экспоненциальная функция y = ex (сплошная красная линия) и соответствующий многочлен Тейлора четвёртого порядка (штрих-пунктирная зелёная линия) вблизи начала координат
Эта статья о многочленах Тейлора дифференцируемых функций. О рядах Тейлора аналитических функций см. соответствующую статью.

Эта теорема названа в честь математика Брука Тейлора, который сформулировал одну из её версий в 1712 году. Явное выражение для ошибки приближения было дано намного позже Жозефом Лагранжем. Ранее, в 1671 году, Джеймсом Грегори уже было упомянуто следствие из теоремы.

Теорема Тейлора позволяет овладеть приёмами вычислений начального уровня, и она является одним из центральных элементарных инструментов в математическом анализе. При изучении математики она является начальной точкой для изучения асимптотического анализа. Теорема также используется в математической физике. Она также обобщается на функции нескольких переменных и векторные функции f : R n R m для любых размерностей n и m . Это обобщение теоремы Тейлора является базовым для определения так называемых струй, которые появляются в дифференциальной геометрии и в теории дифференциальных уравнений с частными производными.

Предпосылки для введения теоремыПравить

 
График f(x) = ex (голубого цвета) с его линейным приближением P1(x) = 1 + x (красным цветом) в точке a = 0.

Если вещественно-значимая функция f(х) является дифференцируемой в точке a, то она имеет линейное приближение в точке a. Это означает, что существует функция h1 такая, что

f ( x ) = f ( a ) + f ( a ) ( x a ) + h 1 ( x ) ( x a ) , lim x a h 1 ( x ) = 0.  

Здесь

P 1 ( x ) = f ( a ) + f ( a ) ( x a )    

это линейное приближение функции f в точке a. График функции y = P1(x) является касательной к графику функции f в точке x = a. Ошибка приближения такова

R 1 ( x ) = f ( x ) P 1 ( x ) = h 1 ( x ) ( x a ) .    

Заметим, что ошибка приближается к нулю немного быстрее, чем разница xa приближается к нулю по мере того, как x стремится к a.

 
График f(x)=ex (голубого цвета) с квадратичным приближением P2(x) = 1 + x + x2/2 (красного цвета) в точке a = 0. Заметны значительные улучшения приближения.

Если мы ищем лучшее приближение f, мы можем использовать многочлен второй степени вместо линейной функции. Вместо нахождения производной от f в точке a, мы можем найти две производные, получив таким образом многочлен, который так же как и f возрастает (или убывает), и так же как и f имеет выпуклость (или вогнутость) в точке a. Многочлен второй степени (квадратный многочлен) в этом случае будет выглядеть следующим образом:

P 2 ( x ) = f ( a ) + f ( a ) ( x a ) + f ( a ) 2 ( x a ) 2 .  

Теорема Тейлора позволяет убедиться, что квадратичное приближение является, в достаточно малой окрестности точки a, лучшим приближением, чем линейное. В частности,

f ( x ) = P 2 ( x ) + h 2 ( x ) ( x a ) 2 , lim x a h 2 ( x ) = 0.  

Здесь ошибка приближения такова

R 2 ( x ) = f ( x ) P 2 ( x ) = h 2 ( x ) ( x a ) 2    

которая, при ограниченном характере h2, приближается к нулю быстрее, чем приближается к нулю (xa)2 по мере того, как x стремится к a.

 
Приближение функции f(x) = 1/(1 + x2) с помощью многочленов Pk порядка k = 1, …, 16 относительно точки x = 0 (красный) и точки x = 1 (салатовый цвет). Приближение вообще не улучшается за пределами (-1,1) и (1-√2,1+√2), соответственно.

Таким образом, мы будем продолжать получать более хорошие приближения к f, если будем использовать многочлены всё более высокой степени. В общем, ошибка в приближении функции с помощью полиномов порядка k будет приближаться к нулю немного быстрее, чем приближается к нулю (xa)k по мере того как x стремится к a.

Это следствие имеет асимптотическую природу: оно лишь говорит нам, что ошибка Rk приближения с помощью многочленов Тейлора k-го порядка Pk приближается к нулю быстрее, чем ненулевой многочлен k-го порядка по мере того как xa. Оно не говорит нам, насколько велика ошибка в любой окрестности центра приближения, но для этого существует формула для остатка (приведена ниже).

Наиболее полные версии теоремы Тейлора как правило приводят к равномерным оценкам ошибки приближения в малой окрестности центра приближения, но эти оценки не являются адекватными для окрестностей, которые слишком велики, даже если функция f является аналитической. В этой ситуации следует выбирать несколько многочленов Тейлора с разными центрами приближения, чтобы иметь надёжное Тейлорово приближение к исходной функции (см. Анимированный рисунок выше). Возможна также ситуация, когда возрастание порядка многочлена не увеличивает качество приближения вообще, даже если функция f дифференцируется бесконечное число раз. Такой пример приведён ниже.

Теорема Тейлора для функций от одной вещественной переменнойПравить

Формулировка теоремыПравить

Точная формулировка большинства базовых версий теоремы такова.

Теорема Тейлора[1] Пусть k ≥ 1 является целым, и пусть функция f : RR является k раз дифференцируемой в точке aR. Тогда существует функция hk : RR такая, что
f ( x ) = f ( a ) + f ( a ) ( x a ) + f ( a ) 2 ! ( x a ) 2 + + f ( k ) ( a ) k ! ( x a ) k + h k ( x ) ( x a ) k , lim x a h k ( x ) = 0.  

Многочлен, возникающий в теореме Тейлора, является многочленом Тейлора k-го порядка

P k ( x ) = f ( a ) + f ( a ) ( x a ) + f ( a ) 2 ! ( x a ) 2 + + f ( k ) ( a ) k ! ( x a ) k  

функции f в точке a.

Теорема Тейлора описывает асимптотическое поведение остаточного члена

  R k ( x ) = f ( x ) P k ( x ) ,  

который является ошибкой при нахождении приближения функции f с помощью многочленов Тейлора. Используя «O» большое и «o» малое теорему Тейлора можно сформулировать так

R k ( x ) = o ( | x a | k ) , x a .  

Формулы для остаткаПравить

Существует несколько точных формул для остаточного члена Rk многочлена Тейлора, наиболее общая из которых следующая.

Остаток в форме среднего значения. Пусть функция f : RR является k+1 раз дифференцируемой на интервале ( a , x )   и непрерывной на отрезке [ a , x ]  . Тогда
ξ L ( a , x ) : R k ( x ) = f ( k + 1 ) ( ξ L ) ( k + 1 ) ! ( x a ) k + 1 .  

Это остаточный член в форме Лагранжа[2]. При тех же условиях

ξ C ( a , x ) : R k ( x ) = f ( k + 1 ) ( ξ C ) k ! ( x ξ C ) k ( x a ) .  

Это остаточный член в форме Коши[3].


Эти уточнения теоремы Тейлора обычно выводятся с помощью формулы конечных приращений.

Можно так же найти и другие выражения для остатка. Например, если G(t) является непрерывной на закрытом интервале и дифференцируемой с нестремящейся к нулю производной на открытом интервале между a и x, то

R k ( x ) = f ( k + 1 ) ( ξ ) k ! ( x ξ ) k G ( x ) G ( a ) G ( ξ )  

для некоторого числа ξ между a и x. Эта версия охватывает формы Лагранжа и Коши как частные случаи, и выводится с помощью теоремы Коши о среднем значении (расширенной версии теоремы Лагранжа о среднем значении).

Запись формулы для остатка в интегральной форме является более общей, чем предыдущие формулы, и требует понимания интегральной теории Лебега. Однако она сохраняется также для интеграла Римана при условии, что производная порядка (k+1) от f является непрерывной на закрытом интервале [a,x].

Интегральная форма[4] записи формулы для остатка Пусть f(k) является абсолютно непрерывной на закрытом интервале между a и x. Тогда
R k ( x ) = a x f ( k + 1 ) ( t ) k ! ( x t ) k d t .  

Вследствие абсолютной непрерывности f(k) на закрытом интервале между a и x, её производная f(k+1) существует как L1-функция, и это следствие может быть получено с помощью формальных вычислений с использованием теоремы Ньютона — Лейбница и интегрирования по частям.

Оценки остаткаПравить

На практике часто бывает полезно численно оценить величину остаточного члена приближения Тейлора.

Будем считать, что f является (k+1)-раз непрерывно дифференцируемой на интервале I, содержащем a. Будем считать, что существуют действительные постоянные числа q и Q такие, что

q f ( k + 1 ) ( x ) Q  

на всём протяжении I. Тогда остаточный член удовлетворяет неравенству[5]

q ( x a ) k + 1 ( k + 1 ) ! R k ( x ) Q ( x a ) k + 1 ( k + 1 ) ! ,  

если x > a, и схожая оценка, если x < a. Это простое следствие из формулы остатка в Лагранжевой форме. В частности, если

| f ( k + 1 ) ( x ) | M  

на интервале I = (ar,a+r) с некоторым r>0, то

| R k ( x ) | M | x a | k + 1 ( k + 1 ) ! M r k + 1 ( k + 1 ) !  

для всех x∈(ar,a+r). Второе неравенство называется равномерной оценкой, потому что она сохраняет равномерность для всех x на интервале (ar,a+r).

ПримерПравить

 
Приближение ex (голубой) с помощью многочленов Тейлора Pk порядка k=1,…,7 с центром в точке x=0 (красный).

Допустим, мы хотим найти приближение функции f(x) = ex на интервале [−1,1] и убедиться, что ошибка не превышает значения 10−5. В этом примере считаем, что нам известны следующие свойства экспоненциальной функции:

( ) e 0 = 1 , d d x e x = e x , e x > 0 , x R .  

Из этих свойств следует, что f(k)(x) = ex для всех k, и в частности, f(k)(0) = 1. Отсюда следует, что многочлен Тейлора k-го порядка функции f в точке 0 и его остаточного члена в форме Лагранжа даётся формулой

P k ( x ) = 1 + x + x 2 2 ! + + x k k ! , R k ( x ) = e ξ ( k + 1 ) ! x k + 1 ,  

где ξ — это некоторое число между 0 и x. Поскольку ex возрастает согласно (*), мы можем использовать ex ≤ 1 для x ∈ [−1, 0], чтобы оценить остаток на подынтервале [−1, 0]. Для нахождения верхней границы значения остатка на интервале [0,1], можем использовать свойство eξ<<ex для 0<ξ<x, чтобы оценить

e x = 1 + x + e ξ 2 x 2 < 1 + x + e x 2 x 2 , 0 < x 1  

используя многочлен Тейлора второго порядка. Выражая из этого неравенства ex, приходим к выводу, что

e x 1 + x 1 x 2 2 = 2 1 + x 2 x 2 4 , 0 x 1  

приняв, что числитель принимает максимальное из всех своих возможных значений, а знаменатель принимает минимальное из всех своих возможных значений. Используя эти оценки значений ex, мы видим, что

| R k ( x ) | 4 | x | k + 1 ( k + 1 ) ! 4 ( k + 1 ) ! , 1 x 1 ,  

и требуемая точность определённо достигается в том случае, когда

4 ( k + 1 ) ! < 10 5 4 10 5 < ( k + 1 ) ! k 7.  

(где факториал 7!=5 040 и 8!=40 320.) В конечном счёте, теорема Тейлора приводит к приближению

e x = 1 + x + x 2 2 ! + + x 7 7 ! + R 7 ( x ) , | R 7 ( x ) | < 10 5 , 1 x 1.  

Отметим, что это приближение позволяет вычислить значение e≈2.71828 с точностью до пятого знака после запятой.

АналитичностьПравить

Разложение Тейлора для вещественных аналитических функцийПравить

Пусть I R   является открытым интервалом. По определению, функция f : I R   является вещественной аналитической, если она на данном участке определена сходимостью степенного ряда. Это означает, что для каждого a I   существует некоторое r > 0 и последовательность коэффициентов ckR такая, что (ar, a + r) ⊂ I и

f ( x ) = k = 0 c k ( x a ) k = c 0 + c 1 ( x a ) + c 2 ( x a ) 2 + , | x a | < r .  

В общем, радиус сходимости степенного ряда может быть вычислен по формуле Коши–Адамара (англ.)

1 R = lim sup k | c k | 1 k .  

Этот результат основан на сравнении с бесконечно убывающей геометрической прогрессией, и тот же самый метод показывает, что если степенной ряд, разложенный по a, сходится для некоторого bR, он должен сходиться равномерно на закрытом интервале [arb, a + rb], где rb = |ba|. Здесь мы только рассмотрели сходимость степенного ряда, и не исключено, что область (aR,a + R) расширяется за пределы области определения I функции f.

Многочлен Тейлора от вещественной аналитической функции f в точке a

P k ( x ) = j = 0 k c j ( x a ) j , c j = f ( j ) ( a ) j !  

является простым усечением определённого на некотором интервале соответствующего степенного ряда этой функции, и остаточный член на данном интервале даётся аналитической функцией

R k ( x ) = j = k + 1 c j ( x a ) j = ( x a ) k h k ( x ) , | x a | < r .  

Здесь функция

h k : ( a r , a + r ) R ; h k ( x ) = ( x a ) j = 0 c k + 1 + j ( x a ) j  

также является аналитической, поскольку её степенной ряд имеет тот же радиус сходимости, что и исходный ряд. При условии, что [ar, a + r] ⊂ I и r < R, все эти ряды сходятся равномерно на интервале (ar, a + r). Конечно, в случае аналитических функций можно оценить остаточный член Rk(x) путём «обрезания» последовательности производных f′(a) в центре приближения, но при использовании комплексного анализа появляются и другие возможности, которые описаны ниже.

Теорема Тейлора и сходимость ряда ТейлораПравить

Существует разногласие между многочленами Тейлора дифференцируемых функций и рядами Тейлора аналитических функций. Можно рассматривать (справедливо) ряд Тейлора

f ( x ) k = 0 c k ( x a ) k = c 0 + c 1 ( x a ) + c 2 ( x a ) 2 +  

бесконечное число раз дифференцируемой функции f:RR как её «многочлен Тейлора бесконечно большого порядка» в точке a. Теперь оценка остатка многочлена Тейлора подразумевает, что для любого порядка k и для любого r>0 существует постоянная Mk,r>0 такая, что

( ) | R k ( x ) | M k , r | x a | k + 1 ( k + 1 ) !  

для каждого x∈(a-r, a+r). Иногда эти постоянные могут быть выбраны таким образом, что Mk,r → 0, когда k → ∞ и r остаётся неизменной. Тогда ряд Тейлора функции f сходится равномерно к некоторой аналитической функции

T f : ( a r , a + r ) R ; T f ( x ) = k = 0 f ( k ) ( a ) k ! ( x a ) k .  

Тут важно упомянуть тонкий момент. Возможна ситуация, когда бесконечное число раз дифференцируемая функция f имеет ряд Тейлора в точке a, который сходится в некоторой открытой окрестности точки a, но предельная функция Tf отличается от f. Важным примером этого феномена является такой

f : R R ; f ( x ) = { e 1 x 2 , x > 0 , 0 , x 0.  

Используя цепное правило можно показать индуктивно, что для любого порядка k,

f ( k ) ( x ) = { p k ( x ) x 3 k e 1 x 2 , x > 0 0 , x 0  

для некоторого многочлена pk. Функция e 1 x 2   стремится к нулю быстрее, чем любой полином, по мере того как x → 0, тогда f является бесконечное число раз дифференцируемой и f(k)(0) = 0 для каждого положительного целого k. Теперь оценки для остатка многочлена Тейлора функции f показывают, что ряд Тейлора сходится равномерно к нулевой функции на всей действительной числовой оси. Не будет ошибки в следующих утверждениях:

  • Ряд Тейлора функции f сходится равномерно к нулевой функции Tf(x)=0.
  • Нулевая функция является аналитической, и каждый коэффициент её ряда Тейлора равен нулю.
  • Функция f является бесконечное число раз дифференцируемой, но не аналитической.
  • Для любого kN и r>0 существует Mk, r>0 такое, что остаточный член многочлена Тейлора k-го порядка функции f удовлетворяет условию (*).

Теорема Тейлора в комплексном анализеПравить

Теорема Тейлора обобщает функции f : C C  , которые являются комплексно дифференцируемыми на открытом подмножестве UC комплексной плоскости. Однако её полезность снижена другими теоремами комплексного анализа, а именно: более полные версии подобных результатов могут быть выведены для комплексно дифференцируемых функций f : UC с использованием интегральной формулы Коши как показано ниже.

Пусть r > 0 такое, что замкнутый круг B(z, r) ∪ S(z, r) содержится в U. Тогда интегральная формула Коши с положительной параметризацией γ(t)=reit окружности S(z, r) с t ∈ [0,2π] даёт

f ( z ) = 1 2 π i γ f ( w ) w z d w , f ( z ) = 1 2 π i γ f ( w ) ( w z ) 2 d w , , f ( k ) ( z ) = k ! 2 π i γ f ( w ) ( w z ) k + 1 d w .  

Здесь все подынтегральные выражения являются непрерывными на окружности S(z, r), что обосновывает дифференцирование под знаком интеграла (англ.). В частности, если f является один раз комплексно дифференцируемой на открытом множестве U, то она фактически бесконечное число раз комплексно дифференцируема на U. Имеем оценку Коши[6]

| f ( k ) ( z ) | k ! 2 π γ M r | w z | k + 1 d w = k ! M r r k , M r = max | w c | = r | f ( w ) |  

для любого zU и r > 0 такой, что B(z, r) ∪ S(c, r) ⊂ U. Эти оценки подразумевают, что комплексный ряд Тейлора

f ( z ) k = 0 f ( k ) ( c ) k ! ( z c ) k  

функции f сходится равномерно в любом круге B(c, r) ⊂ U с S(c, r) ⊂ U в некоторой функции Tf. Кроме того, используя формулу интегрирования по контуру для производных f(k)(c),

T f ( z ) =   k = 0 ( z c ) k 2 π i γ f ( w ) ( w c ) k + 1 d w = 1 2 π i γ f ( w ) w c k = 0 ( z c w c ) k d w =   1 2 π i γ f ( w ) w c ( 1 1 z c w c ) d w = 1 2 π i γ f ( w ) w z d w = f ( z ) ,  

таким образом, любая комплексно дифференцируемая функция f на открытом множестве UC является комплексно аналитической. Всё то, что было написано выше для вещественных аналитических функций справедливо также и для комплексных аналитических функций, где открытый интервал I заменён на открытое подмножество UC и a-центрированные интервалы (ar, a + r) заменена на c-центрированные круги B(c, r). В частности, разложение Тейлора сохраняется в виде

f ( z ) = P k ( z ) + R k ( z ) , P k ( z ) = j = 0 k f ( k ) ( c ) k ! ( z c ) k ,  

где остаточный член Rk является комплексно аналитическим. При рассмотрении рядов Тейлора методы комплексного анализа позволяют получить несколько более мощные результаты. Например, используя интегральную формулу для любого положительно ориентированную жорданову кривую γ которая параметризирует границу ∂WU области WU, можно получить выражение для производных f(j)(c) как показано выше, и слегка изменив расчёты для Tf(z) = f(z), прийти к точной формуле

R k ( z ) = j = k + 1 ( z c ) j 2 π i γ f ( w ) ( w c ) j + 1 d w = ( z c ) k + 1 2 π i γ f ( w ) d w ( w c ) k + 1 ( w z ) , z W .  

Важная особенность здесь состоит в том, что качество приближения с помощью многочлена Тейлора в области WU является мажорируемым значениями функции f на границе ∂WU. Так же, применяя оценки Коши к выражению остатка Ряда, получаем равномерные оценки

| R k ( z ) | j = k + 1 M r | z c | j r j = M r r k + 1 | z c | k + 1 1 | z c | r M r β k + 1 1 β , | z c | r β < 1.  

ПримерПравить

 
График комплексной функции f(z) = 1/(1 + z2). Модуль показан высотой подъёма и аргумент показан цветом: циан=0, синий=π/3, фиолетовый=2π/3, красный=π, жёлтый=4π/3, зелёный=5π/3.

Функция f:RR, определяемая уравнением

f ( x ) = 1 1 + x 2  

является вещественной аналитической, то есть, в данной области определяется её рядом Тейлора. Один из рисунков, приведённых выше, показывает, что некоторые очень просто задаваемые функции не могут быть выражены с помощью приближения Тейлора в окрестности центра приближения, если эта окрестность слишком велика. Это свойство легко понять в рамках комплексного анализа. Более конкретно, функция f расширяется до мероморфной функции

f : C { } C { } ; f ( z ) = 1 1 + z 2  

на компактифицированной комплексной плоскости. Она имеет простые оси в точках z=i и z=−i, и она всюду аналитическая. Её ряд Тейлора, имеющий центром z0, сходится на любом круге B(z0,r) с r<|z-z0|, где тот же ряд Тейлора сходится при zC. Вследствие этого ряд Тейлора функции f, имеющий центром точку 0, сходится на B(0,1) и он не сходится для любого zC с |z|>1 вследствие имеющихся осей в точках i и −i. По тем же причинам ряд Тейлора функции f, имеющий центром точку 1, сходится на B(1,√2) и не сходится для любого zC с |z-1|>√2.

Обобщения теоремы ТейлораПравить

Высшие порядки дифференцируемостиПравить

Функция f:RnR является дифференцируемой в точке aRn тогда и только тогда, когда существует линейная форма L : RnR и функция h : RnR такая, что

f ( x ) = f ( a ) + L ( x a ) + h ( x ) ( x a ) , lim x a h ( x ) = 0.  

Если этот случай имеет место, то L = df(a) является дифференциалом функции f в точке a. Кроме того, когда частные производные функции f существуют в точке a, то дифференциал f в точке a даётся формулой

d f ( a ) ( v ) = f x 1 ( a ) v 1 + + f x n ( a ) v n .  

Вводя мультииндекс, запишем

| α | = α 1 + + α n , α ! = α 1 ! α n ! , x α = x 1 α 1 x n α n  

для αNn и xRn. Если все частные производные k-го порядка функции f : RnR являются непрерывными в aRn, то, по теореме Клеро, можно изменить порядок смешанных производных в точке a, тогда запись

D α f = | α | f x 1 α 1 x n α n , | α | k  

для частных производных высших порядков является правомерной в этой ситуации. То же самое является верным, если все частные производные (k − 1)-го порядка функции f существуют в некоторой окрестности точки a и являются дифференцируемыми в точке a. Тогда можно сказать, что функция f является k раз дифференцируемой в точке a .

Теорема Тейлора для функций многих переменныхПравить

Теорема Тейлора для функций многих переменных. Пусть f : RnR является k раз дифференцируемой функцией в точке aRn. Тогда существует hα : RnR такая, что
f ( x ) = | α | = 0 k D α f ( a ) α ! ( x a ) α + | α | = k h α ( x ) ( x a ) α , lim x a h α ( x ) = 0.  

Если функция f : RnR является k+1 раз непрерывно дифференцируемой в замкнутом шаре B, то можно получить точную формулу для остатка разложения Тейлора до частных производных (k+1)-го порядка от f в этой окрестности. А именно

f ( x ) = | α | = 0 k D α f ( a ) α ! ( x a ) α + | β | = k + 1 R β ( x ) ( x a ) β , R β ( x ) = | β | β ! 0 1 ( 1 t ) | β | 1 D β f ( a + t ( x a ) ) d t .  

В этом случае, вследствие непрерывности частных производных (k+1)-го порядка на компактном множестве B, непосредственно получаем

| R β ( x ) | | β | β ! max | α | = | β | max y B | D α f ( y ) | , x B .  

ДоказательстваПравить

Доказательство теоремы Тейлора для одной вещественной переменнойПравить

Пусть[7]

h k ( x ) = { f ( x ) P ( x ) ( x a ) k x a 0 x = a  

где, как указано в формулировке теоремы Тейлора,

P ( x ) = f ( a ) + f ( a ) ( x a ) + f ( a ) 2 ! ( x a ) 2 + + f ( k ) ( a ) k ! ( x a ) k .  

Достаточно показать, что

lim x a h k ( x ) = 0.  

Доказательство основано на повторяющемся применении правила Лопиталя. Заметим, что каждое j = 0,1,…,k−1, f ( j ) ( a ) = P ( j ) ( a )  . Отсюда каждая следующая производная числителя функции h k ( x )   стремится к нулю в точке x = a  , и то же самое справедливо для знаменателя. Тогда

lim x a f ( x ) P ( x ) ( x a ) k = lim x a d d x ( f ( x ) P ( x ) ) d d x ( x a ) k = = lim x a d k 1 d x k 1 ( f ( x ) P ( x ) ) d k 1 d x k 1 ( x a ) k = 1 k ! lim x a f ( k 1 ) ( x ) P ( k 1 ) ( x ) x a = 1 k ! ( f ( k ) ( a ) P ( k ) ( a ) ) = 0  

где переход от предпоследнего выражения к последнему следует из определения производной в точке x = a.

ПримечанияПравить

  1. Hazewinkel, Michiel, ed. (2001), Taylor's formula, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 
  2. Klein, 1998, §20.3; Apostol, 1967, §7.7.
  3. Apostol, 1967, §7.7.
  4. Apostol, 1967, §7.5.
  5. Apostol, 1967, §7.6
  6. Rudin, 1987, § 10.26.
  7. Stromberg, 1981

ИсточникиПравить

СсылкиПравить