Это не официальный сайт wikipedia.org 01.01.2023

Хабибуллин, Булат Нурмиевич — Википедия

Хабибуллин, Булат Нурмиевич

Булат Нурмиевич Хабибуллин (24 мая 1958 года, с. Байряка Бавлинского района Татарской АССР) — советский и российский ученый, математик. Специалист в области комплексного анализа, теории потенциала, теории функций, функционального анализа. Автор почти 400 печатных работ, из которых более 340 научныхпо данным общероссийского математического портала MathNet.

Хабибуллин Булат Нурмиевич
тат. Хабибуллин Булат Нурмөхәмәт улы
Снимок 2021 года
Снимок 2021 года
Дата рождения 24 мая 1958(1958-05-24) (64 года)
Место рождения село Байряка Бавлинского района Татарской АССР
Страна  СССР Россия
Научная сфера математика
Место работы Башкирский государственный университет, кафедра высшей алгебры и геометрии, г. Уфа
Альма-матер Башкирский государственный университет (1980)
Учёная степень доктор физико-математических наук (1993)
Учёное звание профессор (1996)
Научный руководитель Красичков-Терновский Игорь Фёдорович
Известен как специалист в теории функций, комплексном анализе, теории потенциала, функциональном анализе
Награды и премии Отличник образования Республики Башкортостан(2005 г.). Почетная грамота Минобрнауки России (2008 г.), отраслевая награда RUS Honorary Worker of Higher Professional Education 2004 ribbon.svg "Почётный работник высшего профессионального образования Российской Федерации" (2011 г.), ведомственная награда нагрудный знак "За развитие научно-исследовательской работы студентов" (2013 г.). Премия АН РБ имени чл.-корр. АН СССР А.Ф. Леонтьева за цикл математических работ (2013 г.), Государственная премия Республики Башкортостан в области науки и техники (2021 г.).
Сайт mathnet.ru/rus/person/86…

БиографияПравить

После обучения в восьмилетней школе (с 1997 г. Уруссинская гимназия) рабочего посёлка Уруссу Татарской АССР (1-6 классы) и окончания 10-го класса средней школы № 9 г. Октябрьского Башкирской АССР в 1975 г. с похвальным отзывом II степени за успешное выступление на Всесоюзной олимпиаде школьников по математике 1975 г. (г. Саратов) поступил на математический факультет Башкирского государственного университета имени 40-летия Октября. Окончив вуз по кафедре теории функций и функционального анализа, в 1980 году поступил в аспирантуру Башкирского филиала АН СССР. С 1983 года работает в Башкирском государственном университете: ассистент (1993 г.), старший преподаватель (1995 г.), доцент (1988 г.), профессор (1996 г.). Заведующий кафедрой высшей алгебры и геометрии БашГУ с 1994 г.

Математическая деятельностьПравить

Кандидатская диссертация «Теоремы сравнения и свойство однородности для субгармонических функций» — 1985 (Ростовский государственный университет имени М. А. Суслова, научный руководитель — д.ф-м.н., проф. И.Ф. Красичков-Терновский, оппоненты д.ф.-м.н., проф. В.С. Азарин, д.ф.-м.н., проф. В.П. Захарюта). Докторская диссертация «Распределение нулей целых функций и выметание» — 1993 г. (Украина, г. Харьков,Физико-технический институт низких температур имени Б.И. Веркина НАН Украины; оппоненты - д.ф.-м.н., проф. В.С. Азарин, д.ф.-м.н., проф. Л.И. Ронкин, д.ф.-м.н., проф., чл.-корр. НАН Украины П.М. Тамразов) и 1994 г. (РФ, Санкт-Петербург, Санкт-Петербургское отделение Математического института имени В. А. Стеклова РАН, нострификация; экспертное заключение - д.ф.-м.н., проф. В.П. Хавин).

В 1993-2022 гг. руководитель более 20 грантов Российского фонда фундаментальных исследований и гранта Российского научного фонда, других фондов, исполнитель более чем в 10 грантах и научно-технических программах. Бессменный организатор и председатель оргкомитета более десятка Международных школ-конференций для студентов, аспирантов и молодых учёных «Фундаментальная математика и её приложения в естествознании» в БашГУ, а также нескольких предшествующих всероссийских и региональных школ-конференций той же направленности — каждая с участием более 200 молодых исследователей с секционными докладами и более 40 ведущих российских и зарубежных учёных с пленарными докладами для научной молодёжи, с публикацией тезисов и сборников трудов. Член редколлегии журналов «Уфимский математический журнал», «Azerbaijan Journal of Mathematics», «Доклады Башкирского университета». Член Американского математического общества. Рецензент Mathematical Reviews и многих российских и зарубежных журналов, многократно - оппонент на защитах докторских и кандидатских диссертаций. Три защитившихся аспиранта/соискателя. Выступал с циклами лекций в McGill University (Монреаль, 1998), Beijing Normal University (Пекин, 2010), University of Cyprus (Никосия, 2007 и 2011 гг.). Участник и докладчик на около ста международных, всесоюзных и российских конференциях и симпозиумах.

Основные научные результатыПравить

Разработана общая схема двойственного представления суперлинейных функционалов на проективных пределах векторных решеток и техника построения огибающих в рамках векторной, порядковой и топологической форм теоремы Хана-Банаха. Эта схема дает новые двойственные постановки ряда задач для весовых пространств голоморфных функций одной и многих переменных, определенных в области из конечномерного комплексного пространства, а именно: нетривиальность заданного пространства; описание нулевых множеств; описание множеств (не-)единственности; существование голоморфных функций-мультипликаторов из определенных классов, "погашающих" рост заданной голоморфной функции; представление мероморфных функций отношением голоморфных функций из заданного пространства. Получено полное решение проблемы Рубела-Тейлора о представлении мероморфной функции многих переменных как частного целых функций наименьшего возможного роста при минимальных ограничениях снизу на рост обобщенной характеристики Неванлинны мероморфной функции. Получены новые достаточные условия для множеств (не-)единственности в весовых пространствах целых функций и в весовых пространствах голоморфных в области комплексной плоскости функций. Решена проблема Пэли для мероморфных, целых и плюрисубгармонических функций многих переменных. Установлены условия полноты систем экспонент в пространствах голоморфных функций в области в терминах распределения последовательностей показателей этих систем экспонент и в терминах геометрических характеристик области. Получены новые условия существования ненулевой целой функции экспоненциального типа с заданными нулями и с заданными ограничениями на индикаторную диаграмму этой функции. Получены новые условия устойчивости полноты, минимальности и избытка системы экспонент в банаховых пространствах функций в области или на жордановой дуге (обобщение теоремы Редхеффера–Александера для отрезков) в новых терминах дефекта выпуклости области или дуги в направлении. Эти условия формулируются в терминах сдвигов показателей экспоненциальных систем. Установлены общие и в то же время легко проверяемые условия, при которых каждый замкнутый идеал (соотв. подмодуль) в алгебрах (соотв. пространствах) голоморфных или дифференцируемых функций одной переменной топологически порождается не более чем двумя порождающими; для широких классов пространств голоморфных функций получены условия, при которых пересечение инвариантных относительно дифференцирования подпространств, допускающих спектральный синтез, наследует или нет это свойство. Установлены критерии существования целой функции экспоненциального типа с заданными распределением корней и ограничением на рост вдоль прямой, что развивает классическую теорему Мальявена-Рубела до завершенной формы, включающей в себя и субгармонические версии. Получен критерий полноты экспоненциальной системы в банаховом пространстве функций, непрерывных на отрезке заданной длины в равномерной топологии, с точностью до избытка/дефекта не более чем в одну экспоненциальную функцию исключительно в терминах показателей, длины отрезка и преобразований Гильберта некоторого специального класса тестовых положительных функций.

Родители, семьяПравить

Отец - Хабибуллин Нурмөхәмәт Хабибулла улы (1922-2001); мама - Хабибуллина (Хасанова) Дания Габдрахман кызы (1929-2002); сестра - Идиятуллина (Хабибуллина) Суфия Нурмиевна. Жена - Хабибуллина (Басырова) Назира Рифовна, выпускница математического факультета БашГУ 1981 г. Дети - сын и дочь.

СсылкиПравить

Следующие ссылки напрямую или опосредованно выводят почти на все научные публикации Б.Н. Хабибуллина: mathnet.ru, elibrary.ru, orcid.org, Web of Science, Scopus, researchgate.net, arxiv.org, Статья в Башкирской энциклопедии