Фотолюминофоры
Фотолюминофо́ры — группа люминофоров, которые люминесцируют под воздействием света. Сохраняют накопленную световую энергию и отдают её как непосредственно в момент возбуждения, так и в виде послесвечения какой-либо продолжительности после прекращения возбуждения в видимом, ультрафиолетовом и/или инфракрасном спектре. К этому классу люминофоров относится очень широкий список соединений. Различают как природные фотолюминофоры, так и искусственно синтезированные.
К природным фотолюминофорам относят категорию минералов, которые во время своего образования могли претерпеть особые изменения, связанные с температурным режимом, наличием определённого состава примесей, давления, минералы, обладающие флуоресценцией (свечением, заметным в темноте), к примеру, такие как вюрцит — ZnS, некоторые смесевые разновидности барита и кальцита. Эта категория минералов является очень редкой и ценной.
К искусственным фотолюминофорам относят синтезированные соединения, обладающие улучшенными характеристиками послесвечения и свойствами, намного превосходящими природные минералы. К ним относятся сульфиды и селениды элементов второй группы таблицы Менделеева, в частности селенид магния MgSe, кальция CaSe, стронция SrSe, бария BaSe, цинка ZnSe. К фотолюминофорам относят также нитриды бора и некоторые окисные соединения металлов второй группы. К искусственным фотолюминофорам так же относят и сравнительно недавно синтезированные составы. Эти соединения являются формульными и структурными аналогами природного минерала шпинели — MgAl2O4.
Основные сведенияПравить
В подавляющем большинстве, фотолюминофоры — это искусственно синтезированные многокомпонентные смеси неорганических соединений. Смесь состоит из:
- Основы - хлоридов, сульфатов, боратов, фторидов или фосфатов щелочно-земельных металлов[1]
- Металла-активатора
- Плавней (флюса).
По основному компоненту условно можно выделить несколько групп:
- Сульфиды. В первую группу входят сульфид цинка, а также смесь сульфидов цинка и кадмия в разной стехиометрии, активированные медью, свинцом, марганцем, висмутом. В группу входят также сульфиды кальция, магния, стронция и бария, с активаторами висмута, меди, цинка, сурьмы, свинца, марганца, серебра, олова, и РЗЭ — самария и церия, которые готовятся из сульфидов [метод 1] или карбонатов с добавкой серы[метод 2], восстановителей и плавней. В большинстве своём обладают длительной и интенсивной флуоресценцией, термолюминесценцией, и некоторые триболюминесценцией.
- Селениды. Сюда относятся селениды цинка, кадмия, кальция, стронция и бария, активированные медью, цинком, сурьмой, свинцом, висмутом, серебром. Все готовятся из готовых селенидов или исходных соединений с добавкой плавней. Обладают сравнительно интенсивной флуоресценцией и термолюминесценцией.
- Сульфиды-селениды. Группа включает в себя смеси соединений первой и второй группы.
- Окисные фотолюминофоры. Это оксиды магния, кальция, стронция и карбоната бария, прокаленные с плавнями и активаторами из второй группы. Готовятся без добавления серы[метод 3]. Обладают хорошей люминесценцией, также флуоресценцией и сильной термолюминесценцией.
- Неорганические бораты. Бораты цинка и кадмия разной стехиометрии с марганцевым активатором. Имеют хорошую флюоресценцию оранжево-красных тонов.
- Прочие кристаллофосфоры, в частности нитриды бора и их смеси.
Все группы фотолюминофоров различаются не только по химическому составу, но и по физическим свойствам, присущим разным составам, а также способами синтеза, обработки и применения таких составов на практике.
При возбуждении люминофора светом энергия может быть поглощена как на уровне активатора, так и на уровне основного вещества.
Поглощение световой энергии на уровне активатора сопровождается переходом электрона с основного уровня активатора на возбуждённый, а излучение света происходит при обратном перемещении электрона. Возникает явление флуоресценции. Электроны, вырванные возбуждающим светом, могут перейти в зону проводимости и локализоваться на ловушках. Освободиться из ловушек электроны могут лишь в том случае, если им сообщить необходимое количество энергии. При этом электроны либо переходят в зону активатора и рекомбинируют с центрами свечения, либо будут повторно захвачены ловушками. В этом случае возникает явление фосфоресценции (длительное свечение)[2].
При поглощении света на уровне основного вещества электроны переходят в зону проводимости из валентной зоны. В валентной зоне образуются дырки, которые переходят и могут локализоваться в зоне активатора. Помимо образования электронно-дырочных пар, в решетке могут образоваться экситоны (квазичастицы, представляющие собой электронное возбуждение в кристалле), которые способны ионизировать центры свечения. Возникает явление люминесценции[2].
ПрименениеПравить
Сфера применения фотолюминофоров достаточно обширна. Узкополосные люминофоры, активированные редкоземельными элементами, используются при создании люминесцентных ламп. Перспективность применения этих люминофоров обусловлена возможностью одновременного повышения световой отдачи и индекса цветопередачи люминесцентных ламп. Это помогает добиться существенной экономии расходов на освещение[3][4].
Фотолюминофоры нашли применение в эвакуационных системах, поскольку в отличие от электрических эвакуационных систем не потребляют энергию, не требуют затрат на эксплуатацию и позволяют реализовать протяжённую разметку в труднодоступных местах.
Для оптимизации поисковых работ предлагается использовать альтернативные источники световой энергии – люминофоры длительного послесвечения (ЛДП). Люминофоры можно наносить на одежду в виде вставок. Также люминофоры можно использовать для маркировки пострадавших.
ЛДП используются в изделиях в двух основных типах:
- Лакокрасочный вариант характеризуется высокой яркостью свечения, экономичным расходом люминофора, высокой долговечностью, устойчивостью к внешним воздействиям. Наносится на изделие поверх отражающего слоя (белый грунт) и покрывается сверху защитным слоем. К недостаткам относится низкая гидролитическая устойчивость, особенно при воздействии солнечного облучения.
- Монолитный вариант представляет собой изделие из материала с малым оптическим поглощением.
Алюминат стронция в виде тонкослойного источника света используется в эвакуационных знаках и знаках пожарной безопасности[5]
Для улучшения этой статьи желательно:
|
ПримечанияПравить
Методики
- ↑ Настоящие Рецепты Щелочноземельных Светосоставов На Чистых Сульфидах - Мои Файлы - Действующие Рецепты Люминофоров - Химический Свет (неопр.). Дата обращения: 5 октября 2010. Архивировано 1 февраля 2011 года.
- ↑ Рецептура И Технология Изготовления И Обработки Щёлочноземельных Светосоставов Приготовленных Из Карбонатов. Основные Базовые Цвета. - Мои Файлы - Действующие Рецепты... (неопр.) Дата обращения: 17 октября 2010. Архивировано 31 января 2011 года.
- ↑ Действующие Рецепты Люминофоров - Химический Свет (неопр.). Дата обращения: 17 октября 2010. Архивировано 2 февраля 2011 года.
ЛитератураПравить
- ↑ Rong-Jun Xie, Naoto Hirosaki. Silicon-based oxynitride and nitride phosphors for white LEDs—A review // Science and Technology of Advanced Materials. — 2007-01. — Т. 8, вып. 7-8. — С. 588–600. — ISSN 1878-5514 1468-6996, 1878-5514. — doi:10.1016/j.stam.2007.08.005.
- ↑ 1 2 Казанкин О. Ф., Марковский Л. Я., Миронов И. А., Пекерман Ф. М., Петошина Л .Н. Неорганические люминофоры. — Ленинград, 1975.
- ↑ Быстров Ю. А., Литвак И. И., Персианов Г. М. Электронные приборы для отображения информации. — Москва, 1985.
- ↑ Revolution in lamps : a chronicle of 50 years of progress. — 2nd ed. — Lilburn, GA: Fairmont Press, 2001. — 1 online resource (xxiv, 288 pages) с. — ISBN 0-88173-378-4, 978-0-88173-378-5, 978-1-003-15098-5, 1-003-15098-5.
- ↑ Абовян М. Ю., Микаэль Ю., Большухин В. А., Буйновский А. С. Функциональные оксидные материалы на основе редких и редкоземельных металлов. — Томск, 2005.