Это не официальный сайт wikipedia.org 01.01.2023

Фаза колебаний — Википедия

Фаза колебаний

(перенаправлено с «Фазовый фронт»)

Фа́за колеба́ний полная или мгновенная — аргумент периодической функции, описывающей колебательный или волновой процесс.

Графики двух периодических функций (колебаний) одинаковой частоты задержаны (сдвинуты) один относительно другого. Задержка во времени эквивалентна соответствующей разности фаз

Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, то есть при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, то есть при t = 0 в точке с координатами ( x ,   y ,   z ) = 0 (для волнового процесса).

Фаза колебанияэлектротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению[1].

ОпределенияПравить

Фаза колебания — гармоническое колебание φ .  

Величину φ ,   входящую в аргумент функций косинуса или синуса, называют фазой колебаний описываемой этой функцией:

φ = ω t .  

Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений:

A cos ( ω t + φ 0 ) ,  
A sin ( ω t + φ 0 ) ,  
A e i ( ω t + φ 0 ) .  

Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида:

A cos ( k x ω t + φ 0 ) ,  
A sin ( k x ω t + φ 0 ) ,  
A e i ( k x ω t + φ 0 ) ,  

для волны в пространстве любой размерности (например, в трехмерном пространстве):

A cos ( k r ω t + φ 0 ) ,  
A sin ( k r ω t + φ 0 ) ,  
A e i ( k r ω t + φ 0 ) .  

Фаза колебаний (полная) в этих выражениях — аргумент функции, то есть выражение, записанное в скобках; фаза колебаний начальная — величина φ 0 ,   являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полная часто опускают.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами. Так как:

ω = 2 π / T ,   то φ = ω t = 2 π t / T .  

Отношение t / T   указывает, сколько периодов прошло от момента начала колебаний. Любому значению времени t ,   выраженному в числе периодов T ,   соответствует значение фазы φ ,   выраженное в радианах. Так, по прошествии времени t = T / 4   (четверти периода) фаза будет φ = π / 2 ,   по прошествии половины периода — φ = π ,   по прошествии целого периода φ = 2 π   и т. д.

Поскольку функции синус и косинус совпадают друг с другом при сдвиге аргумента (то есть фазы) на π / 2 ,   то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса, а не синуса[2][3].

То есть, для колебательного процесса (см. выше) фаза (полная):

φ = ω t + φ 0 ,  

для волны в одномерном пространстве:

φ = k x ω t + φ 0 ,  

для волны в трехмерном пространстве или пространстве любой другой размерности:

φ = k r ω t + φ 0  ,
где ω   — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени);
t   — время;
φ 0   — начальная фаза (то есть фаза при t = 0 ) ;  
k   — волновое число;
x   — координата точки наблюдения волнового процесса в одномерном пространстве;
k   — волновой вектор;
r   — радиус-вектор точки в пространстве (набор координат, например, декартовых).

В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:

1 цикл = 2 π   радиан = 360 угловых градусов.

В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.

Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, то есть близкие к монохроматическим, но не строго монохроматические, а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t   и пространственных координат r ,   в принципе — произвольная функция[4]:

φ = φ ( r , t ) .  

Связанные терминыПравить

Рассматривая два колебательных процесса одинаковой частоты, говорят о постоянной разности полных фаз (о сдвиге фаз) этих процессов. В общем случае сдвиг фаз может меняться во времени, например, из-за угловой модуляции одного или обоих процессов.

Если два колебательных процесса происходят одновременно (например, колеблющиеся величины достигают максимума в один и тот же момент времени), то говорят, что они находятся в фазе (колебания синфазны). Если моменты максимума одного колебания совпадают с моментами минимума другого колебания, то говорят, что колебания находятся в противофазе (колебания противофазны). Если разность фаз составляет ±90°, то говорят, что колебания находятся в квадратуре или что одно из этих колебаний — квадратурное по отношению к другому колебанию (опорному, «синфазному», то есть служащему для условного определения начальной фазы).

Если амплитуды двух противофазных монохроматических колебательных процессов одинаковы, то при сложении таких колебаний (при их интерференции) в линейной среде происходит взаимное уничтожение колебательных процессов.

ДействиеПравить

Действие - одна из наиболее фундаментальных физических величин, на которой построено современное описание практически любой достаточно фундаментальной физической системы[5]  — по своему физическому смыслу является фазой волновой функции.

ПримечанияПравить

  1. ГОСТ Р 52002-2003. Электротехника. Термины и определения основных понятий. ГОСТ даёт определение: «Фаза (синусоидального электрического) тока — аргумент синусоидального электрического тока, отсчитываемый от точки перехода значения тока через нуль к положительному значению»
  2. Хотя нет принципиальной причины не сделать противоположный выбор, что иногда и делается некоторыми авторами.
  3. Таким образом, обычно, в соответствии с этим соглашением начальная фаза колебания вида A sin ( ω t )   считается равной π / 2   (синус отстает от косинуса по фазе)
  4. Хотя в части случаев с наложением условий на скорость изменения и т. п., несколько ограничивающих произвольность функции.
  5. Существуют системы, формализм действия к которым применять неудобно и даже такие, к которым он по сути неприменим, однако в современном понимании такие системы делятся на два класса: 1) не фундаментальные (то есть описываемые неточно, и предполагается, что будучи описана более точно такая система может быть — в принципе — описана через действие), 2) относящиеся к далеко не общепризнанным теоретическим построениям

ЛитератураПравить

  • Стрелков С. П. Введение в теорию колебаний. Учебник для вузов. 4-е изд., стер.. — М.: Лань-Пресс, 2021. — 440 с.