Кратность критической точки -гладкой функции — размерность так называемой локальной алгебры градиентного отображения этой функции в рассматриваемой точке.
ОпределениеПравить
Пусть — -гладкая функция от переменных , имеющая своей критической точкой. Соответствующее градиентное отображение задается формулой Введем следующие обозначения:
Сопоставляя каждой гладкой функции её формальный ряд Тейлора, мы получаем вложение в алгебру . Локальной алгеброй градиентного отображения в точке называется факторалгебра а её размерность называется кратностью функции в точке |
В случае, когда функции имеют в точке линейно независимые градиенты (это условие равносильно тому, что гессиан функции отличен от нуля), кратность , и критическая точка называется невырожденной. Удобно также положить в случае некритической точки.
Функции одной переменнойПравить
В этом случае , и кратность критической точки может быть определена условием:
при этом значение соответствует некритической точке. Действительно, так как в этом случае степенной ряд функции начинается с члена то любой элемент представим в виде , где и — многочлен степени задаваемый коэффициентами, т.е.
Теорема Тужрона в этом случае принимает тривиальный вид: в окрестности критической точки конечной кратности существуют координаты, в которых функция имеет вид
|
Функции нескольких переменныхПравить
В этом случае важной характеристикой критической точки является ранг матрицы Гессе в точке .
- Если , то (по лемме Морса) в окрестности точки функция с помощью выбора гладких локальных координат приводится к виду
|
- Если , то в окрестности точки функция с помощью выбора гладких локальных координат приводится к виду
- и, если кратность функции равна , то приводится к виду
|
- Если , то в окрестности точки функция с помощью выбора гладких локальных координат приводится к виду
- где ряд Тейлора функции начинается с мономов степени
- Если кубическая часть функции имеет три различных (вещественных или комплексных) корня, то приводится к виду
|
- Если кубическая часть функции имеет два различных корня (один из них — кратный), то, при выполнении дополнительного условия общности положения, функция приводится к виду
|
Теорема деленияПравить
Пусть — гладкая функция от переменной , имеющая точку своей критической точкой конечной кратности по переменной , т.е.
Тогда в окрестности точки функция представима в виде
где и — гладкие функции своих аргументов, не обращается в нуль и для всех . |
Впервые эта теорема была доказа Вейерштрассом для голоморфных функций комплексных переменных[1] (теорема деления по Вейерштрассу). Приведённый выше вещественный аналог часто называют теоремой деления по Мальгранжу или по Мазеру.
Критические точки отображенийПравить
Кратность критической точки -гладкого отображения — это размерность локальной алгебры данного отображения.
Пусть — -гладкое отображение, имеющее своей критической точкой. Отображение задается набором функций от переменных . Введем следующие обозначения:
Сопоставляя каждой гладкой функции её формальный ряд Тейлора, мы получаем вложение в алгебру . Локальной алгеброй отображения в точке называется факторалгебра а её размерность называется кратностью отображения в точке |
См. такжеПравить
ЛитератураПравить
- Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений, — Любое издание.
- Брёкер Т., Ландер Л. Дифференцируемые ростки и катастрофы, — Любое издание.
- Голубицкий М., Гийемин В. Устойчивые отображения и их особенности, — М.: Мир, 1977.
- Хёрмандер Л. Введение в теорию функций нескольких комплексных переменных, — М.: Мир, 1968.
- Сборник статей: Особенности дифференцируемых отображений, — М.: Мир, 1968.
- Паламодов В.П. О кратности голоморфного отображения, — Функц. анализ и его прил., 1:3 (1967), стр. 54–65.
- Арнольд В. И. Замечание о подготовительной теореме Вейерштрасса, — Функц. анализ и его прил., 1:3 (1967), стр. 1–8.
- Павлова Н.Г., Ремизов А.О. Введение в теорию особенностей. — М.: Изд-во МФТИ, 2022. — 181 с. — ISBN 978-5-7417-0794-4.
ПримечанияПравить
- ↑ Weierstrass K. Einige auf die Theorie der analytischen Functionen mehrerer Veränderlichen sich beziehende Sätze. — Mathematische Werke, V. II, Mayer und Müller, Berlin, 1895, 135–188.