Это не официальный сайт wikipedia.org 01.01.2023

Компактное пространство — Википедия

Компактное пространство

(перенаправлено с «Компакт»)

Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.

В общей топологии компактные пространства по своим свойствам напоминают конечные множества в теории множеств.

ОпределениеПравить

Компактное пространство — топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие[1].

Изначально такое свойство называлось бикомпактностью (этот термин был введён П. С. Александровым и П. С. Урысоном), а в определении компактности использовались счётные открытые покрытия. Впоследствии более общее свойство бикомпактности оказалось более популярным и постепенно стало называться просто компактностью. Сейчас термин «бикомпактность» употребляется в основном лишь топологами школы П. С. Александрова. Для пространств, удовлетворяющих второй аксиоме счётности, первоначальное определение компактности равносильно современному[2].

Бурбаки и его последователи включают в определение компактности свойство хаусдорфовости пространства[2].

Примеры компактных множествПравить

Связанные определенияПравить

  • Подмножество топологического пространства T, являющееся в индуцированной T топологии компактным пространством, называется компактным множеством.
  • Множество называется предкомпактным (или компактным относительно T), если его замыкание в T компактно[3].
  • Пространство называется секвенциально компактным, если из любой последовательности в нём можно выделить сходящуюся подпоследовательность.
  • Локально компактное пространство — топологическое пространство, в котором любая точка имеет окрестность, замыкание которой компактно.
  • Ограниченно компактное пространство — метрическое пространство, в котором все замкнутые шары компактны.
  • Псевдокомпактное пространство — тихоновское пространство, в котором каждая непрерывная вещественная функция ограничена.
  • Счётно компактное пространство — топологическое пространство, в любом счётном покрытии которого открытыми множествами найдётся конечное подпокрытие.
  • Слабо счётно компактное пространство — топологическое пространство, в котором любое бесконечное множество имеет предельную точку.
  • H-замкнутое пространство  — хаусдорфово пространство, замкнутое в любом объемлющем его хаусдорфовом пространстве[4].

Термин «компакт» иногда используется для метризуемого компактного пространства, но иногда просто как синоним к термину «компактное пространство». Также «компакт» иногда используется для хаусдорфова компактного пространства[5]. Далее, мы будем использовать термин «компакт» как синоним к термину «компактное пространство».

СвойстваПравить

  • Свойства, равносильные компактности:
    • Топологическое пространство компактно тогда и только тогда, когда каждое центрированное семейство замкнутых множеств, то есть семейство, в котором пересечения конечных подсемейств не пусты, имеет непустое пересечение[6].
    • Топологическое пространство компактно тогда и только тогда, когда каждая направленность в нём имеет предельную точку.
    • Топологическое пространство компактно тогда и только тогда, когда каждый фильтр в нём имеет предельную точку.
    • Топологическое пространство компактно тогда и только тогда, когда каждый ультрафильтр сходится по крайней мере к одной точке.
    • Топологическое пространство X   компактно тогда и только тогда, когда в нём всякое бесконечное подмножество имеет хотя бы одну точку полного накопления в X  .
  • Другие общие свойства:
  • Свойства компактных метрических пространств:

См. такжеПравить

ПримечанияПравить

ЛитератураПравить