Это не официальный сайт wikipedia.org 01.01.2023

Силовые линии векторного поля — Википедия

Силовые линии векторного поля

(перенаправлено с «Силовые линии»)

Силова́я ли́ния, или интегра́льная крива́я, — графическое средство для представления векторных полей. Изображается в виде кривой, касательная к которой в любой точке сонаправлена с вектором поля в этой точке[1][2][3].

Силовые линии, изображающие электрическое поле, созданное положительным зарядом (слева), отрицательным зарядом (по центру) и незаряженным объектом (справа)
Силовые магнитные линии короткого соленоида с током. Направление тока в обмотке соленоида изображено крестиком и точкой в кружочках. Направление вектора магнитного поля внутри соленоида определяется по правилу буравчика.

Так как физические поля — однозначные функции координат, через каждую точку может проходить только одна силовая линия, за исключением особых точек, где направление вектора поля неопределённо.

Некоторые физические поля имеют свои особые точки, проявляющиеся в изображении интегральных кривых. В частности, точечный электрический заряд является центром, в котором сходятся или из которого расходятся силовые линии. Примером иного типа особой точки служит точка, лежащая посередине между двумя равными зарядами.

Совокупность нескольких силовых линий применяется для визуализации векторных полей, которые сложно наглядно изобразить каким-либо другим образом. Вопрос о количестве силовых линий лишён смысла — их столько, сколько нанёс автор чертежа. В области сравнительно больших полей соседние линии приближаются друг к другу (происходит «сгущение»), а в области слабых полей отдаляются.

Иногда наносятся стрелки, помечающие направление вектора поля. Если силовая линия перпендикулярна плоскости рисунка, то её направление изображается либо крестиком в кружочке (если поле направлено за рисунок), либо точкой в кружочке (если оно направлено к читателю) — как вид стрелы лука со стороны оперения и со стороны наконечника.

Вектор физического силового поля обычно называется напряжённостью поля.

Изображение, показывающее типичную для рассматриваемого случая совокупность интегральных линий, иногда называют диаграммой или изображением векторного поля. Изображения векторных полей используются в электродинамике, гидродинамике, при описании гравитационных полей и др. Если векторное поле описывает течение некоторой среды, например, жидкости, газа, электрического тока, то интегральные кривые такого поля принято называть линиями тока.

Электрическое полеПравить

Электрическое поле описывается уравнениями Максвелла

r o t   E = B t , d i v   D = ρ  ,

где E   — вектор напряжённости электрического поля, B   — вектор магнитной индукции, D   — вектор индукции электрического поля, ρ   — плотность электрического заряда.

Электрическое поле может быть как потенциальным, так и вихревым (возникающим за счёт явления электромагнитной индукции), или комбинацией этих двух случаев.

Потенциальное электрическое поле имеет интегральные кривые, которые начинаются на положительных зарядах и заканчиваются на отрицательных зарядах или уходят в бесконечность. Согласно закону Кулона сила, действующая на пробный заряд, будет направлена по касательной к интегральной кривой[4][5]. Силовые линии вихревого поля всегда замкнуты, их густота в точке пространства определена значением производной по времени магнитной индукции в этой точке, а направление определяется правилом буравчика.

В опытах силовые линии электрического поля могут быть наглядно визуализированы при помощи суспензий диэлектрических порошков в диэлектрических жидкостях.

Магнитное полеПравить

 
Силовые линии магнитного поля магнита, визуализированные железными опилками

Согласно уравнениям Максвелла,

d i v   B = 0 , r o t   H = D t + j  ,

где H   — напряжённость магнитного поля, j   — вектор плотности электрического тока.

В природе неизвестны магнитные монополи, поэтому магнитное поле может возникать лишь в результате изменения вектора электрической индукции (первое слагаемое в правой части 2-го уравнения) и протекания электрического тока (второе слагаемое в правой части 2-го уравнения).

Первое уравнение гласит, что дивергенция магнитного поля всегда равна нулю, то есть поле является вихревым и поэтому его силовые линии (линии магнитной индукции) всегда замкнуты, или иными словами магнитное поле не имеет ни источников, ни стоков.

В опытах силовые линии магнитного поля могут быть наглядно визуализированы при помощи ферромагнитных порошков либо суспензий их в жидкости.

Гравитационное полеПравить

В гравитационном поле силовые линии начинаются в бесконечности и заканчиваются на массивных телах.

Гравитационное поле неподвижной системы тел в ньютоновском приближении является потенциальным. Но если тела совершают движение, например, вращаются друг вокруг друга как кратные звёзды, то гравитационное поле в инерциальной системе отсчёта перестаёт быть потенциальным.

Поле скоростейПравить

 
Трубка тока в жидкости или газе

Силовые линии векторного поля, описывающие мгновенное поле скоростей частиц жидкости или газа, называют линиями тока. Совокупность линий тока изображает картину течения в некоторый момент времени. Для случая стационарного течения линии тока совпадают с траекториями частиц.

Система дифференциальных уравнений, описывающих линию тока:

x F x = y F y = z F z  ,

где F x ,   F y ,   F z   — компоненты вектора поля скоростей, x ,   y ,   z   — координаты.

Линии тока течения жидкостей и газов могут быть визуализированы с помощью взвешенных частиц, внесённых в поток, например, алюминиевой пудры в жидкости или пыли в газе[6].

Пучок линий тока, выходящих из замкнутой кривой, не лежащей ни одной своей частью вдоль любой линии тока, образует трубку тока.

Также линии тока описывают в сплошной среде перемещение электрических зарядов — токи в электрических проводах и потоки энергии в полях вектора Умова — Пойнтинга.

Построение интегральных линийПравить

По известноиу векторному полю F ( r )   можно построить интегральную линию, проходящую через заданную точку с радиус-вектором r 0  . Единичный вектор τ  , касательный к линии и сонаправленный с вектором поля, выражается как

τ = F ( r 0 ) / | F ( r 0 ) |  .

При перемещении на небольшое расстояние d s   вдоль направления поля можно найти новую точку на линии:

r 1 = r 0 + F ( r 0 ) | F ( r 0 ) | d s  .

Продолжая подобный процесс, получаем итерационную формулу для точек, принадлежащих линии:

r i+1 = r i + F ( r i ) | F ( r i ) | d s  .

Проведение кривой через полученные точки двст приближённое изображение искомой линии. Если уменьшать приращение длины d s   и увеличивать число шагов итерации, то точность нахождения линии будет увеличиваться. Назначая приращение d s   отрицательным, можно построить линию в обратную сторону от заданной точки.

ПримечанияПравить

  1. Tou, Stephen. Visualization of Fields and Applications in Engineering. — John Wiley and Sons, 2011. — P. 64. — ISBN 9780470978467. Архивная копия от 3 февраля 2022 на Wayback Machine
  2. Durrant, Alan. Vectors in Physics and Engineering. — CRC Press, 1996. — P. 129–130. — ISBN 9780412627101. Архивная копия от 3 февраля 2022 на Wayback Machine
  3. Haus, Herman A.; Mechior, James R. Section 2.7: Visualization of Fields and the Divergence and Curl  (неопр.). Electromagnetic fields and energy. Hypermedia Teaching Facility, Massachusetts Institute of Technology (1998). Дата обращения: 9 ноября 2019. Архивировано 19 мая 2021 года.
  4. Силовые линии электростатического поля  (неопр.). Дата обращения: 14 сентября 2017. Архивировано 14 сентября 2017 года.
  5. 9 Силовые линии и эквипотенциали  (неопр.). Дата обращения: 14 сентября 2017. Архивировано 13 сентября 2017 года.
  6. Большая советская энциклопедия. Линии тока.  (неопр.) Дата обращения: 3 февраля 2022. Архивировано 3 февраля 2022 года.

СсылкиПравить