Это не официальный сайт wikipedia.org 01.01.2023

Пятнадцатиугольник — Википедия

Пятнадцатиугольник

Пятнадцатиугольник — это многоугольник с пятнадцатью сторонами.

Пятнадцатиугольник
Правильный пятнандцатиугольник
Правильный пятнандцатиугольник
Тип Правильный многоугольник
Рёбра 15
Символ Шлефли {15}
Диаграмма Коксетера — Дынкина CDel node 1.pngCDel 15.pngCDel node.png
Вид симметрии Диэдрическая группа (D15)
Внутренний угол 156°
Свойства
выпуклый, вписанный, Равносторонний, равноугольный[en], изотоксальный
Логотип Викисклада Медиафайлы на Викискладе

Правильный пятнадцатиугольникПравить

Правильный пятнадцатиугольник представлен символом Шлефли {15}.

Правильный пятнадцатиугольник имеет внутренние углы 156°. Со стороной a пятнадцатиугольник имеет площадь, задаваемую формулой

A = 15 4 a 2 c t g π 15 = 15 4 7 + 2 5 + 2 15 + 6 5 a 2 = 15 a 2 8 ( 3 + 15 + 2 5 + 5 ) 17.642362910544204 a 2 .  

ИспользованиеПравить

 
Правильный треугольник, десятиугольник и пятнадцатиугольник могут полностью закрыть вершину на плоскости.

ПостроениеПравить

Поскольку 15 = 3 × 5 является произведением различных простых чисел Ферма, правильный пятнадцатиугольник можно построить с помощью циркуля и линейки: Следующие построения правильного пятнадцатиугольника с заданной описывающей окружностью аналогично иллюстрации для утверждения XVI в книге IV Начал Евклида[1].

 

Сравнение построения с построением Евклида см. на рисунке Пятнадцатиугольник

В построении для заданной описывающей окружности: F G ¯ = C F ¯ , A H ¯ = G M ¯ , | E 1 E 6 |   равна стороне равностороннего треугольника, а | E 2 E 5 |   равна стороне правильного пятиугольника[2]. Точка H   делит радиус A M ¯   в пропорции золотого сечения: A H ¯ H M ¯ = A M ¯ A H ¯ = 1 + 5 2 = Φ 1 , 618 .  

Сравнение с первой анимацией (с зелёными прямыми) приведено на следующих двух рисунках. Две дуги (для углов 36° и 24°) смещены против часовой стрелки. Построение не использует отрезок C G ¯  , а вместо него использует отрезок M G ¯   как радиус A H ¯   для второй дуги (угол 36°).

  

Построение с помощью циркуля и линейки для заданной длины стороны. Построение почти такое же, что и для построения пятиугольника по заданной стороне, оно также начинается с создания отрезка как продолжения стороны, здесь F E 2 ¯ ,  , который делится в пропорции золотого сечения:

E 1 E 2 ¯ E 1 F ¯ = E 2 F ¯ E 1 E 2 ¯ = 1 + 5 2 = Φ 1.618033988749895 .  

Радиус описанной окружности E 2 M ¯ = R ;  
Длина стороны E 1 E 2 ¯ = a ;  
Угол D E 1 M = M E 2 D = 78  

R = a 1 2 ( 5 + 2 5 + 3 ) = 1 2 8 + 2 5 + 2 15 + 6 5 a = sin ( 78 ) sin ( 24 ) a 2.4048671723720654 a  


СимметрияПравить

 
Симметрии правильного пятнадцатиугольника показаны цветом на рёбрах и вершинах. Прямые отражений показаны синим цветом. Вращения задаются числами в центре. Вершины выкрашены согласно симметрии.

Правильный пятнадцатиугольник имеет диэдральную симметрию порядка 30 (Dih15), представленную 15 прямыми зеркального отражения. Dih15 имеет 3 диэдральные подгруппы: Dih5, Dih3 и Dih1. А кроме того, ещё четыре циклические симметрии — Z15, Z5, Z3 и Z1, где Zn представляет π/n вращательную симметрию.

В пятнадцатиугольнике имеется 8 различных симметрий. Джон Конвей обозначил симметрии буквами с указанием порядка симметрии после буквы[3]. Он обозначил через r30 полную симметрию отражений Dih15, обозначил через d (diagonal = диагональ) отражения относительно прямых, проходящих через вершины, через p отражения относительно прямых, проходящих через середины рёбер (perpendicular = перпендикуляр), а для пятнадцатиугольника с нечётным числом вершин использовал букву i (для зеркал через вершину и середину ребра) и букву g для циклической симметрии. Символ a1 означает отсутствие симметрии.

Эти низкие степени симметрий определяют степени свободы в определении неправильных пятнадцатиугольников. Только подгруппа g15 не имеет степеней свободы, но может рассматриваться как обладающая ориентированными рёбрами.

ПентадекаграммыПравить

Существует три правильных звезды: {15/2}, {15/4}, {15/7} на тех же самых 15 вершинах правильного пятнадцатиугольника, но соединённых через одну, через три или через шесть вершин.

Есть также три правильных звёздчатых фигуры[en]: {15/3}, {15/5}, {15/6}, первая состоит из трёх пятиугольников, вторая состоит из пяти правильных треугольников, а третья состоит из трёх пентаграмм.

Составную фигуру {15/3} можно рассматривать как двухмерный эквивалент трёхмерного соединения пяти тетраэдров.

Picture  
{15/2}
     
 
{15/3} or 3{5}
 
{15/4}
     
 
{15/5} or 5{3}
 
{15/6} or 3{5/2}
 
{15/7}
     
Внутренний угол[en] 132° 108° 84° 60° 36° 12°

Более глубокие усечения правильного пятнадцатиугольника и пентадекаграмм могут дать изогональные (вершинно транзитивные) промежуточные звёздчатые многоугольники, образованные вершинами, находящимися на одинаковом расстоянии, и двумя длинами рёбер[4].

Многоугольники ПетриПравить

Правильный пятнадцатиугольник является многоугольником Петри для некоторого многогранника высокой размерности, полученного ортогональной проекцией:

 
14-симплекс (14D)

Он также является многоугольником Петри для большого 120-ячейника[en] и великого звёздчатого 120-ячейника[en].

ПримечанияПравить

ЛитератураПравить

  • William Dunham. Journey through Genius - The Great Theorems of Mathematics. — Penguin, 1991. the University of Kentucky College of Arts & Sciences Mathematics
  • Johannes Kepler. WELT-HARMONIK / translated and initiated by MAX CASPAR 1939. — Google Books, 1939.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss. Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon // . — The Symmetries of Things, 2008. — ISBN 978-1-56881-220-5.
  • Branko Grünbaum. Metamorphoses of polygons // The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History. — 1994.

СсылкиПравить