Это не официальный сайт wikipedia.org 01.01.2023

Одиннадцатая проблема Гильберта — Википедия

Одиннадцатая проблема Гильберта

Одиннадцатая проблема Гильберта — одна из 23 проблем Давида Гильберта, представленная на Втором международном конгрессе математиков в Париже в 1900 году. Продолжая теорию квадратичной формы, Гильберт сформулировал задачу следующим образом:

Наши знания теории квадратичных числовых полей позволяют нам успешно изучать теорию квадратичных форм с любым количеством переменных и любыми алгебраическими числовыми коэффициентами. Это приводит, в частности, к интересной задаче: решить заданное квадратичное уравнение с алгебраическими числовыми коэффициентами с любым количеством переменных интегральными или дробными числами, относящимися к алгебраическому множеству рациональных чисел, определённой коэффициентами.

Как заявил американский и канадский математик Ирвинг Капланский, «11-я задача заключается просто в следующем: классифицировать квадратичные формы по алгебраическим числовым полям». Именно это немецкий математик Герман Минковский и сделал для квадратичной формы с дробными коэффициентами. Квадратическая форма (не квадратичное уравнение) — это любой полином, в котором каждый член имеет переменные, появляющиеся ровно дважды. Общая форма такого уравнения: a x 2 + b x y + c y 2 (все коэффициенты должны быть целыми числами).

Считается, что данная квадратичная форма представляет собой натуральное число, если вместо переменных, подставляющих конкретные числа, даётся это число. Немецкий математик и физик Карл Гаусс и его последователи обнаружили, что если изменить переменные определённым образом, то новая квадратичная форма будет представлять собой те же натуральные числа, что и прежние, но в другой, более понятной для понимания форме. Эту теорию эквивалентных квадратичных форм он использовал для доказательства результатов теории целых чисел. Французский астроном и математик Жозеф Лагранж, например, показал, что любое натуральное число может быть выражено в виде суммы четырёх квадратов. Гаусс доказал это, используя свою теорию отношений эквивалентности, показав, что квадратическая формула w 2 + x 2 + y 2 + z 2 отображает все натуральные числа. Как упоминалось ранее, Минковский создал и доказал аналогичную теорию для квадратичных форм, в которых в качестве коэффициентов использовались дроби. Одиннадцатая проблема Гилберта предлагает схожую теорию. Иными словами, это способ классификации, при котором мы можем определить, эквивалентна ли одна форма другой, но в случае, если коэффициентами выступают алгебраические числа. Немецкий математик Гельмут Хассе доказал это, используя свой принцип  (англ.) (рус. и тот факт, что теория относительно проста для p-адических систем в октябре 1920 года. Он опубликовал свою работу в 1923 и 1924 годах. Локально-глобальный принцип гласит, что общий результат относительно рационального числа или даже всех рациональных чисел часто можно получить, убедившись, что результат верен для каждой из p-адических числовых систем.

См. такжеПравить