Это не официальный сайт wikipedia.org 01.01.2023

Хлорарахниофитовые водоросли — Википедия

Хлорарахниофитовые водоросли

(перенаправлено с «Chlorarachnea»)

Хлорарахниофи́товые во́доросли[2] (лат. Chlorarachnea) — клада морских одноклеточных водорослей, входящая в состав группы церкозоев, которым в последних работах систематиков присваивают ранг класса и типа соответственно[3]. Распространены в морях тропического и умеренного поясов. Для организмов этой группы характерно наличие четырёхмембранных хлоропластов, в перипластидном пространстве которых находится нуклеоморф — редуцированное ядро эндосимбиотического эукариота[2]. Хлорарахниофитовые водоросли — миксотрофы, они содержат хлорофиллы a и b и способны к фаготрофному питанию. Размножаются вегетативным и бесполым путём, у некоторых описан половой процесс. По последним данным, клада содержит 14 видов в 8 родах.

Хлорарахниофитовые водоросли
Chlorarachnion reptans
Chlorarachnion reptans
Научная классификация
Клада:
Надтип:
Класс:
Хлорарахниофитовые водоросли
Международное научное название
Chlorarachnea Cavalier-Smith, 1993
Синонимы
  • Chlorarachniophyceae
    Hibberd & Norris, 1984, orth. var.[1]
  • Chlorarachniophyta
    Hibberd & Norris, 1984[1]
Дочерние таксоны
см. текст

В ботанической систематике кладе соответствует класс Chlorarachniophyceae. Распространено в литературе и устаревшее название — хлорарахниофи́ты (лат. Chlorarachniophyta), данное ещё при первом описании клады как отдела водорослей[4][2].

История изученияПравить

Первый известный вид хлорарахниофит, Chlorarachnion reptans, был описан из культуры сифоновых зелёных водорослей, собранных на Канарских островах. Первоначально его отнесли к жёлто-зелёным водорослям в составе Stramenopila. В 1966 году Chlorarachnion reptans был переоткрыт в Мексике и выделен в чистой культуре. Отдел Chlorarachniophyta был выделен лишь в 1984 году на основании особенностей ультраструктуры и пигментного состава Chlorarachnion reptans[4][5]. Название класса дано по типовому роду Chlorarachnion (от др.-греч. χλωρός «зелёный» и ἀράχνη «паутина»)[2].

Биология клеткиПравить

Клетки хлорарахниофит — жгутиконосцы или амебоиды с нитчатыми псевдоподиями. Размер клеток варьирует от 5 до 100 мкм. Bigellowiella longifila может образовывать плавучие слизистые колонии[6]. Клетки голые, одноядерные, но имеются трихоцисты. У жгутиковых стадий есть один жгутик, заворачивающийся по спирали вокруг клетки. Для Chlorarachnion характерно развитие ретикулоподий (филоподий), которые сливаются у соседних клеток с образованием сетчатого плазмодия (мероплазмодия, или сетчатого плазмодия)[7]. В составе мероплазмодия могут быть объединены до сотен клеток. У других хлорарахниофит мероплазмодий не развивается, только у Cryptochlora perforans могут сливаться филоподии двух или трёх клеток[2].

Кристы митохондрий трубчатые[8]. Секвенированная митохондриальная ДНК хлорарахниофит характеризуется некоторыми особенностями. Так, кодоны GUG и UUG могут выступать инициаторными, наряду с AUG. Имеются свидетельства переноса генов от митохондриального генома в ядерный геном хозяина в процессе расхождения видов. При этом сохранность порядка генов (синтения) довольно низка, что указывает на частые перестройки в митохондриальных геномах[9].

 
Строение хлоропласта хлорарахниофитовых водорослей

Хлоропласты хлорарахниофит содержат хлорофиллы a и b, природа каротиноидных пигментов неизвестна. Хлоропласты окружены четырьмя мембранами, из которых две — собственные мембраны хлоропласта[en], а две остальные относятся к хлоропастной эндоплазматической сети, причём вторая и третья мембраны могут сливаться на некотором протяжении. Считается, что вторая мембрана представляет собой плазмалемму эндосимбионта, а четвёртая мембрана происходит от пищеварительной вакуоли хозяина. Наружная мембрана хлоропласта не соединяется с наружной ядерной мембраной и не несёт рибосом. Ламеллы состоят из 1—3 тилакоидов, опоясывающей ламеллы нет. Пиреноиды имеются в пластидах всех хлорарахниофит, кроме Partenskyella glossopodia[10]. Каждый пиреноид чётко направлен к центру клетки, по этому признаку хлорарахниофит можно легко отличить от других хлорофилл-b-содержащих водорослей при разглядывании в световой микроскоп. Выдающийся конец пиреноида всегда имеет кэпирующую везикулу, в которой накапливается запасной продукт — β-1-3-глюкан (возможно, парамилон[en])[6][11].

Пластидные геномы хлорарахниофит, секвенированные к настоящему моменту, отличаются консервативностью размера, количества генов и порядка генов. По-видимому, пластидный геном эндосимбионта, проглоченного хлорарахниофитами, практически не изменялся в процессе расхождения видов[12].

Механизм доставки белков в пластиду у хлорарахниофит значительно отличается от других пластид, являющихся результатом вторичного эндосимбиоза. Как и у других водорослей с пластидами, представляющими собой результат вторичного эндосимбиоза, у хлорарахниофит пластидные про-белки имеют двухчастный N-концевой сигнал пластидной локализации, состоящий из специальных последовательностей SP и TPL. Это свидетельствует в пользу наличия у хлорарахниофит специальных транслоконов, обеспечивающих прохождение белков двух внутренних мембран, однако оказалось, что эти комплексы значительно отличаются от таковых у других водорослей с вторичным эндосимбиозом. Более того, показано, что механизм транспорта белка через вторую снаружи мембрану фундаментально отличается[13].

Особый интерес в строении клеток хлорарахниофитовых водорослей представляет нуклеоморфа — редуцированное ядро эндосимбионта, давшего начало хлоропласту. У хлорарахниофит эндосимбионтом стала зелёная водоросль (согласно составу ксантофиллов — из числа празинофициевых[en], по данным молекулярной филогенетики и экологии — ульвофициевых и требуксиофициевых). Нуклеоморфа находится в перипластидном пространстве (между второй и третьей мембранами), в котором также присутствуют цитоплазма эндосимбионта и эукариотические рибосомы. Она окружена двумя мембранами с порами, содержит ДНК и структуру, близкую к ядрышку, рибосомы эукариотического типа и 3 мелкие линейные АТ-обогащённые хромосомы. Длина хромосом нуклеоморфы варьирует от 90 до приблизительно 210 килобаз (кб), а общий размер генома нуклеоморфы варьирует от 330 кб у Lotharella amoebiformis до 610 кб у неидентифицированного штамма CCMP622[14]. Плотность генов в нуклеоморфе очень велика (иногда гены даже перекрываются), хотя они содержат некоторое количество очень коротких интронов. Ряды генов рРНК располагаются в субтеломерных[en] участках. Белки, кодируемые нуклеоморфой, обслуживают её саму, лишь немногие функционируют в хлоропластах. У Bigelowiella natans гистоны Н3[en] и Н4[en] кодируются самой нуклеоморфой, а гены гистонов Н2A[en] и Н2B[en] перенесены в ядро хозяина. Линкерные гистоны (Н1[en]) в нуклеоморфах полностью отсутствуют. Имеются некоторые отличия в посттрансляционных модификациях гистонов (гистоновом коде[en]) нуклеоморфы и ядра. Так, в нуклеоморфах хлорарахниофит никогда не встречаются метки гетерохроматина в виде метилирования H3K9 и H3K27, метилирование H3K36, соответствующее элонгации транскрипции, почти все известные у эукариот метки активации/репрессии транскрипции, а также почти полностью отсутствует фосфорилирование, связанное с динамикой хромосом при митозе[15].

Нуклеоморфа делится перед делением хлоропласта путём впячивания мембран её оболочки. Митотического веретена там обнаружено не было, поэтому механизм расхождения хромосом по дочерним нуклеоморфам не ясен[11]. Показано, что в образовании перетяжки у внутренней пары мембран частично участвуют белки FtsZD, однако механизм образования перетяжек в наружной части мембран неизвестен[16].

Кроме хлорарахниофит, нуклеоморфу с тремя хромосомами такой же организации имеют криптофитовые водоросли, однако у них она имеет другое происхождение и происходит от красной водоросли. Таким образом, наличие нуклеоморфы у представителей этих групп можно считать результатом конвергентной эволюции[17]. Итак, в клетках хлорарахниофит и криптофит имеются четыре генома: ядерный, пластидный, митохондриальный и геном нуклеоморфы. Показано, что и у хлорарахниофитовой водоросли Bigelowiella natans, и у криптофитовой водоросли Guillardia theta[en] ядерный геном гаплоидный, геном нуклеоморфы диплоидный у B. natans и тетраплоидный у G. theta, а пластидный и митохондриальный геномы у обоих видов имеются во множестве копий в каждой соответствующей органелле[18].

Размножение и жизненный циклПравить

Морфологическое разнообразие между штаммами Lotharella globosa

Для хлорарахниофит характерно вегетативное размножение делением клетки надвое, бесполое при помощи зооспор и половое (изо- и анизогамия). В жизненном цикле могут встречаться амебоидные, коккоидные и монадные стадии. Все три стадии имеются только у Chlorarachnion reptans и Lotharella amoeboformis. Коккоидные стадии имеют многослойную клеточную стенку и нередко рассматриваются как цисты[17]. У Chlorarachnion reptans, имеющего мероплазмодий, в условиях нехватки питательных веществ звёздчатые вегетативные клетки втягивают ретикулоподии, округляются и одеваются плотной клеточной стенкой. Покоящиеся клетки существуют только за счёт фотосинтеза и не способны к гетеротрофии. При благоприятных условиях покоящиеся клетки снова превращаются в звёздчатые вегетативные клетки с ретикулоподиями. Образование зооспор происходит путём двукратного деления покоящейся клетки. В результате образуются одножгутиковые зооспоры, жгутик которых обвивается вокруг задней части плывущей клетки. Жгутик несёт тонкие боковые волоски и отходит от вторично непарной единственной кинетосомы. При половом размножении неподвижная женская гамета сливается с подвижной звёздчатой мужской гаметой. Образующаяся при оплодотворении зигота делится мейозом и прорастает звёздчатой вегетативной клеткой[19][20]. Для Lotharella globosa показано значительное морфологическое разнообразие (наличие или отсутствие тех или иных стадий в жизненном цикле) внутри вида между различными культивируемыми штаммами[21].

Поведение дочерних клеток, образующихся при вегетативном размножении, может различаться. Например, у Lotharella vacuolata деление претерпевает коккоидная клетка, одна из дочерних клеток принимает амебоидную форму и уплывает, а другая дочерняя клетка остаётся внутри материнской. У планктонной водоросли Bigellowiella longifila вегетативными стадиями могут быть жгутиконосная и амебоидная, причём амебоидная имеет только одну длинную филоподию. Когда амебоидная клетка делится, то одна из дочерних клеток наследует филоподию и уплывает, перекачивая содержимое клетки в дальний конец филоподии, а другая остаётся неподвижной и образует филоподию только спустя некоторое время[22].

Распространение и экологияПравить

Будучи единственной группой водорослей, которых никогда не находили в пресной воде[23], хлорарахниофитовые обитают в тёплых морях тропического и умеренного поясов по всему миру. Амебоидные и коккоидные формы обитают в прибрежных водах, а монадные формы представлены в океаническом пикопланктоне. Хлорарахниофиты были обнаружены в самых разнообразных морских местообитаниях: на песчаных пляжах, каменистых берегах, в приливно-отливной зоне, вблизи поверхности воды, на поверхности морских растений, на песчинках и вблизи дна[23]. Хлорарахниофиты — миксотрофы, они способны к фотосинтезу, но также могут питаться бактериями, жгутиконосцами и эукариотическими водорослями[24].

Филогения и классификацияПравить

Первоначально клада была описана как отдел водорослей Chlorarachniophyta, состоящий из одного рода Chlorarachnion[4], в дальнейшем число родов увеличилось. Молекулярный анализ подтвердил монофилию таксона. Анализ генов рРНК, субъединиц тубулина и актина показал, что хлорарахниофиты наиболее близки к гетеротрофным амёбофлагеллятам — церкомонадам[en] и эвглифидам[en], вместе с которыми (а также плазмодиофоровыми) образуют группу Cercozoa[25]. Впрочем, группу, наиболее близкую к клеткам-хозяевам хлорарахниофит, определить не удалось. Кавалир-Смит предполагал, что хлорарахниофиты и эвгленофиты происходят от единого фотосинтезирующего предка, однако дальнейшее изучение показало неверность этого предположения[26][27]. После утверждения церкозоев в ранге типа (до этого некоторые учёные повышали группе ранг до царства включительно[2]) ранг хлорарахниофитовых водорослей понизили до класса, синонимизировав названия отдела и класса. Так как таксоны церкозоев описаны в основном по правилам МКЗН, старшие таксоны клады были переименованы в соответствии с правилами этого кодекса[3][1].

Различия между родами класса заключаются в особенностях структуры пиреноида и расположении нуклеоморфы, однако точные взаимоотношения между отдельными родами неизвестны[25]. По состоянию на июнь 2016 года в класс хлорарахниофитовых водорослей включают 8 родов и 14 видов[21][28][29]:

  • Класс Chlorarachnea [Chlorarachniophyceae Hibberd & Norris, 1984, orth. var.]
    • Отряд Chlorachniida [Chlorarachniales Ishida & Y.Hara, 1996, orth. var.]

ПримечанияПравить

  1. 1 2 3 Класс Chlorarachnea (англ.) в Мировом реестре морских видов (World Register of Marine Species). (Дата обращения: 19 июля 2016).
  2. 1 2 3 4 5 6 Белякова и др., 2006, с. 4.
  3. 1 2 Ruggiero M. A., Gordon D. P., Orrell T. M., Bailly N., Bourgoin T., Brusca R. C., Cavalier-Smith T., Guiry M. D., Kirk P. M.  A Higher Level Classification of All Living Organisms // PLoS ONE. — 2015. — Vol. 10, no. 4. — P. e0119248. — doi:10.1371/journal.pone.0119248. — PMID 25923521.
  4. 1 2 3 David J. Hibberd, Richard E. Norris. Cytology and ultrastructure of Chlorarachnion reptans (Chlorarchniophyta Divisio nova, Chlorachniophyceae Classis nova). (англ.) // Journal of Phycology. — 1984. — Vol. 20, no. 2. — P. 310—330.
  5. Brodie, Lewis, 2007, p. 178.
  6. 1 2 Brodie, Lewis, 2007, p. 173.
  7. Хаусман и др., 2010, с. 180.
  8. Белякова и др., 2006, с. 5.
  9. Tanifuji G., Archibald J. M., Hashimoto T. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. (англ.) // Scientific reports. — 2016. — Vol. 6. — P. 21016. — doi:10.1038/srep21016. — PMID 26888293. [исправить]
  10. Ota S., Vaulot D., Le Gall F., Yabuki A., Ishida K. Partenskyella glossopodia gen. et sp. nov., the first report of a Chlorarachniophyte that lacks a pyrenoid. (англ.) // Protist. — 2009. — Vol. 160, no. 1. — P. 137—150. — doi:10.1016/j.protis.2008.09.003. — PMID 19013103. [исправить]
  11. 1 2 Белякова и др., 2006, с. 5—7.
  12. Suzuki S., Hirakawa Y., Kofuji R., Sugita M., Ishida K. Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species. (англ.) // Journal of plant research. — 2016. — Vol. 129, no. 4. — P. 581—590. — doi:10.1007/s10265-016-0804-5. — PMID 26920842. [исправить]
  13. Hirakawa Y., Burki F., Keeling P. J. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. (англ.) // Eukaryotic cell. — 2012. — Vol. 11, no. 3. — P. 324—333. — doi:10.1128/EC.05264-11. — PMID 22267775. [исправить]
  14. Silver T. D., Koike S., Yabuki A., Kofuji R., Archibald J. M., Ishida K. Phylogeny and nucleomorph karyotype diversity of chlorarachniophyte algae. (англ.) // The Journal of eukaryotic microbiology. — 2007. — Vol. 54, no. 5. — P. 403—410. — doi:10.1111/j.1550-7408.2007.00279.x. — PMID 17910684. [исправить]
  15. Marinov G. K., Lynch M. Conservation and divergence of the histone code in nucleomorphs. (англ.) // Biology direct. — 2016. — Vol. 11, no. 1. — P. 18. — doi:10.1186/s13062-016-0119-4. — PMID 27048461. [исправить]
  16. Hirakawa Y., Ishida K. Prospective function of FtsZ proteins in the secondary plastid of chlorarachniophyte algae. (англ.) // BMC plant biology. — 2015. — Vol. 15. — P. 276. — doi:10.1186/s12870-015-0662-7. — PMID 26556725. [исправить]
  17. 1 2 Белякова и др., 2006, с. 7.
  18. Hirakawa Y., Ishida K.  Polyploidy of endosymbiotically derived genomes in complex algae // Genome Biology and Evolution. — 2014. — Vol. 6, no. 4. — P. 974—980. — doi:10.1093/gbe/evu071. — PMID 24709562.
  19. Lee, 2008, p. 319.
  20. Хаусман и др., 2010, с. 180—181.
  21. 1 2 Hirakawa Y., Howe A., James E. R., Keeling P. J. Morphological diversity between culture strains of a chlorarachniophyte, Lotharella globosa. (англ.) // Public Library of Science ONE. — 2011. — Vol. 6, no. 8. — P. e23193. — doi:10.1371/journal.pone.0023193. — PMID 21858028.
  22. Brodie, Lewis, 2007, p. 177—178.
  23. 1 2 Brodie, Lewis, 2007, p. 172.
  24. Белякова и др., 2006, с. 7—8.
  25. 1 2 Белякова и др., 2006, с. 6, 8.
  26. Tolweb: Chlorarachniophytes  (неопр.).
  27. Rogers M. B., Gilson P. R., Su V., McFadden G. I., Keeling P. J. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. (англ.) // Molecular biology and evolution. — 2007. — Vol. 24, no. 1. — P. 54—62. — doi:10.1093/molbev/msl129. — PMID 16990439.
  28. Семейство Chlorarachniaceae (англ.) в Мировом реестре морских видов (World Register of Marine Species). (Дата обращения: 19 июля 2016).
  29. Family: Chlorarachniaceae (англ.). AlgaeBase(Дата обращения: 19 июля 2016).

ЛитератураПравить