Это не официальный сайт wikipedia.org 01.01.2023

Число с плавающей запятой — Википедия

Число с плавающей запятой

(перенаправлено с «Числа с плавающей точкой»)

Число с плавающей запятой (или число с плавающей точкой) — экспоненциальная форма представления вещественных (действительных) чисел, в которой число хранится в виде мантиссы и порядка (показателя степени). При этом число с плавающей запятой имеет фиксированную относительную точность и изменяющуюся абсолютную. Используемое наиболее часто представление утверждено в стандарте IEEE 754. Реализация математических операций с числами с плавающей запятой в вычислительных системах может быть как аппаратная, так и программная.

«Плавающая запятая» и «плавающая точка»Править

Так как в некоторых, преимущественно англоязычных и англофицированных странах при записи чисел целая часть отделяется от дробной точкой, то в терминологии этих стран фигурирует название «плавающая точка» (англ. floating point). Так как в России целая часть числа от дробной традиционно отделяется запятой, то для обозначения того же понятия исторически используется термин «плавающая запятая», однако в настоящее время в русскоязычной литературе и технической документации можно встретить оба варианта.

Происхождение названияПравить

Название «плавающая запятая» происходит от того, что запятая в позиционном представлении числа (десятичная запятая, или, для компьютеров, двоичная запятая — далее по тексту просто запятая) может быть помещена где угодно относительно цифр в строке. Это положение запятой указывается отдельно во внутреннем представлении. Таким образом, представление числа в форме с плавающей запятой может рассматриваться как компьютерная реализация экспоненциальной записи чисел.

Преимущество использования представления чисел в формате с плавающей запятой над представлением в формате с фиксированной запятойцелыми числами) состоит в том, что можно использовать существенно больший диапазон значений при неизменной относительной точности. Например, в форме с фиксированной запятой число, занимающее 6 разрядов в целой части и 2 разряда после запятой, может быть представлено в виде 123 456,78. В свою очередь, в формате с плавающей запятой в тех же 8 разрядах можно записать числа 1,2345678; 1 234 567,8; 0,000012345678; 12 345 678 000 000 000 и так далее, но для этого необходимо иметь дополнительное двухразрядное поле для записи показателей степени основания 10 от 0 до 16, при этом общее число разрядов составит 8+2=10.

Скорость выполнения компьютером операций с числами, представленными в форме с плавающей запятой, измеряется во FLOPS (от англ. floating-point operations per second — «[количество] операций с плавающей запятой в секунду») и является одной из основных единиц измерения быстродействия вычислительных систем.

Структура числаПравить

Число с плавающей запятой состоит из следующих частей:

  • знак мантиссы (указывает на отрицательность или положительность числа),
  • мантисса (выражает значение числа без учёта порядка),
  • знак порядка,
  • порядок (выражает степень основания числа, на которое умножается мантисса).

Нормальная и нормализованная формыПравить

Нормальной формой числа с плавающей запятой называется такая форма, в которой мантисса (без учёта знака) находится на полуинтервале [ 0 , 1 )  , то есть 0 a < 1  .

Такая форма записи имеет недостаток: некоторые числа записываются неоднозначно (например, 0,0001 можно записать как 0,000001⋅102, 0,00001⋅101, 0,0001⋅100, 0,001⋅10−1, 0,01⋅10−2 и так далее), поэтому распространена (особенно в информатике) также другая форма записи — нормализованная, в которой мантисса десятичного числа принимает значения от 1 (включительно) до 10 (исключительно), то есть 1 a < 10   (аналогично, мантисса двоичного числа принимает значения от 1 до 2). В такой форме любое число (кроме 0  ) записывается единственным образом. Недостаток заключается в том, что в таком виде невозможно представить 0, поэтому представление чисел в информатике предусматривает специальный признак (бит) для числа 0.

Старший разряд (целая часть числа) мантиссы двоичного числа (кроме 0) в нормализованном виде равен 1 (так называемая неявная единица), поэтому при записи мантиссы числа в ЭВМ старший разряд можно не записывать, что и используется в стандарте IEEE 754. В позиционных системах счисления с основанием большим, чем 2 (в троичной, четверичной и др.), этого свойства нет.

Способы записиПравить

При ограниченных возможностях оформления (например, отображение числа на семисегментном индикаторе), а также при необходимости обеспечить быстрый и удобный ввод чисел, вместо записи вида m·be (m — мантисса; b — основание, чаще всего 10; e — экспонента), записывают лишь мантиссу и показатель степени, разделяя их буквой «E» (от англ. exponent). Основание при этом неявно полагают равным 10. Например, число 1,528535047⋅10−25 в этом случае записывается как 1.528535047E-25.

Краткий обзорПравить

Существует несколько способов того, как строки из цифр могут представлять числа:

  • Наиболее распространённый путь представления значения числа из строки с цифрами — в виде целого числа — запятая (radix point) по умолчанию находится в конце строки.
  • В общем математическом представлении строка из цифр может быть сколь угодно длинной, а положение запятой обозначается путём явной записи символа запятой (или точки) в нужном месте.
  • В системах с представлением чисел в формате с фиксированной запятой существует определённое условие относительно положения запятой. Например, в строке из 8 цифр условие может предписывать положение запятой в середине записи (между 4-й и 5-й цифрой). Таким образом, строка «00012345» обозначает число 1,2345 (нули слева всегда можно отбросить).
  • В экспоненциальной записи используют стандартный (нормализованный) вид представления чисел. Число считается записанным в стандартном (нормализованном) виде, если оно записано в виде a q n  , где a  , называемое мантиссой, такое, что 1 a < q  , n   — целое, называется показатель степени и q   — целое, основание системы счисления (на письме это обычно 10). То есть в мантиссе запятая помещается сразу после первой значащей (не равной нулю) цифры, считая слева направо, а дальнейшая запись даёт информацию о действительном значении числа. Например, период обращения (на орбите) спутника Юпитера Ио, который равен 152 853,5047 с, в стандартном виде можно записать как 1,528535047⋅105 с. Побочным эффектом ограничения на значения мантиссы является то, что в такой записи невозможно изобразить число 0.
  • Запись в форме с плавающей запятой похожа на запись чисел в стандартном виде, но мантисса и экспонента записываются раздельно. Мантисса записывается в нормализованном формате — с фиксированной запятой, подразумеваемой после первой значащей цифры. Возвращаясь к примеру с Ио, запись в форме с плавающей запятой будет иметь мантиссу 1,528535047 и показатель 5. Это означает, что имеется в виду число в 105 раз больше числа 1,528535047, то есть для получения подразумеваемого числа запятая сдвигается на 5 разрядов вправо. Однако, запись в форме с плавающей запятой используется в основном в электронном представлении чисел, при котором используется основание системы счисления 2, а не 10. Кроме того, в двоичной записи мантисса обычно денормализована, то есть запятая подразумевается до первой цифры, а не после, и целой части вообще не имеется в виду — так появляется возможность и значение 0 сохранить естественным образом. Таким образом, десятичная 9 в двоичном представлении с плавающей запятой будет записана как мантисса +1001000…0 и показатель +0…0100. Отсюда, например, беды с двоичным представлением чисел типа одной десятой (0,1), для которой двоичное представление мантиссы оказывается периодической двоичной дробью — по аналогии с 1/3, которую нельзя конечным количеством цифр записать в десятичной системе счисления.

Запись числа в форме с плавающей запятой позволяет производить вычисления над широким диапазоном величин, сочетая фиксированное количество разрядов и точность. Например, в десятичной системе представления чисел с плавающей запятой (3 разряда) операцию умножения, которую мы бы записали как

0,12 × 0,12 = 0,0144

в нормальной форме представляется в виде

(1,20⋅10−1) × (1,20⋅10−1) = (1,44⋅10−2).

В формате с фиксированной запятой мы бы получили вынужденное округление

0,120 × 0,120 = 0,014.

Мы потеряли крайний правый разряд числа, так как данный формат не позволяет запятой «плавать» по записи числа.

Диапазон чисел, представимых в формате с плавающей запятойПравить

Диапазон чисел, которые можно записать данным способом, зависит от количества бит, отведённых для представления мантиссы и показателя. На обычной 32-битной вычислительной машине, использующей двойную точность (64 бита), мантисса составляет 1 бит знак + 52 бита, показатель — 1 бит знак + 10 бит. Таким образом получаем диапазон точности примерно от 4,94⋅10−324 до 1.79⋅10308 (от 2−52 × 2−1022 до ~1 × 21024). (или от 3.7⋅10-1126 до 9.99⋅101091). В стандарте IEEE 754 несколько значений данного типа зарезервировано для обеспечения возможности представления специальных значений. К ним относятся значения NaN (Not a Number, «не число») и +/-INF (Infinity, бесконечность), получающихся в результате операций деления на ноль или при превышении числового диапазона. Также сюда попадают денормализованные числа, у которых мантисса меньше единицы. В специализированных устройствах (например, GPU) поддержка специальных чисел часто отсутствует. Существуют программные пакеты, в которых объём памяти, выделенный под мантиссу и показатель, задаётся программно и ограничивается лишь объёмом доступной памяти ЭВМ (см. Арифметика произвольной точности).

Точность Одинарная Двойная Расширенная
Размер (байты) 4 8 10
Число десятичных знаков ~7.2 ~15.9 ~19.2
Наименьшее значение (>0), denorm 1,4⋅10−45 4,9⋅10−324 3,7⋅10−1126
Наименьшее значение (>0), normal 1,2⋅10−38 2,3⋅10−308 1⋅10−1091
Наибольшее значение 3,4×10+38 1,7×10+308 9,9×10+1091
Поля S-E-F S-E-F S-E-I-F
Размеры полей 1-8-23 1-11-52 1-15-1-63
  • S — знак, E — показатель степени, I — целая часть, F — дробная часть
  • Так же, как и для целых, знаковый бит — старший.

Машинный эпсилонПравить

В отличие от чисел с фиксированной запятой, сетка чисел, которые способна отобразить арифметика с плавающей запятой, неравномерна: она более густая для чисел с малыми порядками и более редкая — для чисел с большими порядками. Но относительная погрешность записи чисел одинакова и для малых чисел, и для больших. Машинным эпсилоном называется наименьшее положительное число ε такое, что 1 ε 1   (знаком   обозначено машинное сложение). Грубо говоря, числа a и b, соотносящиеся так, что 1 < a b < 1 + ε  , машина не различает.

Для одинарной точности ε = 2 24 5 , 96 10 8  , то есть приблизительно 7 значащих цифр. Для двойной точности: ε = 2 53 1 , 11 10 16  , 15 значащих цифр[1].

См. такжеПравить

ПримечанияПравить

  1. E. Cheney, David Kincaid. Numerical Mathematics and Computing. — Cengage Learning, 2012. — 43– p. — ISBN 1-133-71235-5.

ЛитератураПравить

  •  Криницкий Н. А., Миронов Г. А., Фролов Г. Д. Программирование. — М.: Государственное издательство физико-математической литературы, 1963. — 384 с.
  • Генри С. Уоррен, мл. Глава 15. Числа с плавающей точкой // Алгоритмические трюки для программистов = Hacker’s Delight. — М.: Вильямс, 2007. — С. 288. — ISBN 0-201-91465-4.

СсылкиПравить