Частные производные высших порядков
Этой статье нужно больше ссылок на другие статьи для интеграции в энциклопедию. |
Пусть задана функция . Тогда каждая из её частных производных (если они, конечно, существуют) и , которые называются также частными производными первого порядка, снова являются функцией независимых переменных и может, следовательно, также иметь частные производные. Частная производная обозначается через или , а через или . Таким образом,
,
и, аналогично,
, .
Производные и называются частными производными второго порядка. Определение: частной производной второго порядка от функции дифференцируемой в области , называется первая производная от соответствующей частной производной. Рассматривая частные производные от них, получим всевозможные частные производные 3 порядка: , , и т. д.
Это статья-заготовка по математике. Помогите Википедии, дополнив эту статью, как и любую другую. |
Для улучшения этой статьи по математике желательно:
|