Это не официальный сайт wikipedia.org 01.01.2023

Теория Эйнштейна — Картана — Википедия

Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение общей теории относительности, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина материальных полей[1]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен общей теории относительности, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к общей теории относительности в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.

Состояние теории и её основные уравненияПравить

Теория Картана стоит особняком среди альтернативных теорий гравитации как потому, что она неметрическая, так и потому, что она очень старая. Состояние теории Картана неясно. Уилл (1986) утверждает, что все неметрические теории противоречат Эйнштейновскому принципу эквивалентности (ЭПЭ), и поэтому должны быть отброшены. В одной из последующих работ Уилл (2001) смягчает это утверждение, разъясняя экспериментальные критерии тестирования неметрических теорий на удовлетворение ЭПЭ. Мизнер, Торн и Уилер (1973) утверждают, что теория Картана является единственной неметрической теорией, проходящей все экспериментальные тесты, а Турышев (2007) приводит эту теорию в списке удовлетворяющих всем текущим экспериментальным ограничениям.

Картан (1922, 1923) предложил простое обобщение теории гравитации Эйнштейна, введя модель пространства-времени с метрическим тензором и линейной связностью, ассоциированной с метрикой, но не обязательно симметричной. Антисимметричная часть связности — тензор кручения — связывается в этой теории с плотностью внутреннего момента импульса (спина) материи. Независимо от Картана, похожие идеи развивали Сиама, Киббл и Хейл в промежутке от 1958 до 1966 года.

Исходно теория была развита в формализме дифференциальных форм, но здесь она будет изложена на тензорном языке. Лагранжева плотность гравитации в этой теории формально совпадает с таковой ОТО и равняется скаляру кривизны:

L = 1 16 π G R ( Γ , g ) ,  

однако введение кручения модифицирует связность, которая теперь не равняется символам Кристоффеля, а равна их сумме с тензором конторсии

Γ ν λ μ = { ν λ   μ   } + K ν λ μ ,  
K μ ν λ = Q μ ν λ + Q λ ν μ + Q ν λ μ , Q μ ν λ = 1 2 ( Γ μ ν λ Γ μ λ ν ) ,  

где Q μ ν λ   — антисимметричная часть линейной связности — кручение. Предполагается, что линейная связность является метрической, что снижает количество степеней свободы, присущих неметрическим теориям. Уравнения движения этой теории включают 10 уравнений для тензора энергии-импульса, 24 уравнения для канонического тензора спина и уравнения движения материальных негравитационных полей[1]:

R μ ν 1 2 g μ ν R + 4 B [ α β μ B β ] α ν + 2 B β α μ B ν β α B μ β α B ν β α  
1 2 g μ ν ( 4 B α β [ λ B α λ β ] + B α β γ B α β γ ) = κ T μ ν ,  
Q λ μ ν + δ μ λ Q ν δ ν λ Q μ = κ s λ μ ν ,  
L ϕ A + ( λ 2 Q λ ) L λ ϕ A = 0 ,  

где T μ ν = δ δ g μ ν ( g L m )   — метрический тензор энергии-импульса материи, s μ ν λ = δ L m δ Q λ μ ν   — канонический тензор спина, B λ μ ν = Q λ μ ν + δ μ λ Q ν δ ν λ Q μ  , а Q μ = Q λ μ λ   — след тензора кручения.

Кривизна пространства-времени при этом — не риманова, но на римановом пространстве-времени лагранжиан сводится к лагранжиану ОТО. Эффекты неметричности в данной теории являются настолько малыми, что ими можно пренебречь даже в нейтронных звёздах. Единственной областью сильных расхождений оказывается, возможно, очень ранняя Вселенная. Привлекательной чертой этой теории (и её модификаций) является возможность получения несингулярных решений типа «отскока» для Большого Взрыва (см. Минкевич и соавт. (1980)).

ПримечанияПравить

  1. 1 2 Иваненко Д. Д., Пронин П. И., Сарданашвили Г. А. Калибровочная теория гравитации. — М.: Изд. МГУ, 1985.

См. такжеПравить