Это не официальный сайт wikipedia.org 01.01.2023

Теорема о свадьбах — Википедия

Теорема о свадьбах (также теорема о мальчиках и девочках, теорема Холла) — утверждение о том, что в двудольном графе для любого натурального k любые k вершин одной из долей, где k не превышает числа вершин доли, связаны по крайней мере с k различными вершинами другой доли тогда и только тогда, когда граф разбивается на пары по первой доле.

Теорема о свадьбах

Доказана в 1935 году Филиппом Холлом.[1]

О доказательствахПравить

  • Одно из доказательств следует немедленно из венгерского алгоритма для поиска максимального паросочетания в графе.
  • Для случая регулярных графов степени 2 n   теорема легко выводится из существования эйлерова цикла в каждой связной компоненте графа; на этой идее можно построить доказательство для всех регулярных графов.[2]

Вариации и обобщенияПравить

  • Теорема обобщается на двудольные графы с бесконечным множеством вершин, при условии, что все вершины имеют конечную степень.
 
Пример бесконечного двудольного графа в котором не выполняется теорема о свадьбах
  • Пример бесконечного двудольного графа, для которого теорема не верна — прямой цилиндрический стакан, который строится следующим образом: первая доля множества вершин — точки верхней окружности стакана и центр нижнего основания; вторая доля — точки окружности нижнего основания; рёбра графа — все радиусы нижнего основания и вертикальные отрезки боковой поверхности.

ПримечанияПравить

  1. Hall, Philip (1935), On Representatives of Subsets, J. London Math. Soc. Т. 10 (1): 26–30, DOI 10.1112/jlms/s1-10.37.26 
  2. G. Kalai. The seventeen camels riddle, and Noga Alon’s camel proof and algorithms (англ.). — 2017. Архивировано 28 августа 2020 года.

СсылкиПравить