Стандартные ошибки в форме Уайта
Стандартные ошибки в форме Уайта или состоятельные при гетероскедастичности стандартные ошибки (HC s.e. — Heteroskedasticity consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы (в частности и стандартных ошибок) МНК-оценок параметров линейной модели регрессии, которая состоятельна при гетероскедастичности случайных ошибок модели, альтернативная стандартной (классической) оценке, которая в данном случае является несостоятельной.
Сущность и формулаПравить
Истинная ковариационная матрица МНК-оценок параметров линейной модели в общем случае равна:
где V — ковариационная матрица случайных ошибок. В случае, если нет гетероскедастичности и автокорреляции (то есть когда ) формула упрощается
Поэтому для оценки ковариационной матрицы в классическом случае достаточно использовать оценку единственного параметра — дисперсии случайных ошибок: , которая, как можно доказать, является несмещённой и состоятельной оценкой.
В общем случае, однако, необходима некоторая оценка неизвестной ковариационной матрицы. В частности, если предполагается наличие гетероскедастичности при отсутствии автокорреляции, ковариционная матрица случайных ошибок является диагональной и все диагональные элементы неизвестны. В этом случае, общее выражение для ковариационной матрицы оценок можно записать в виде:
Уайт (White, 1980) показал, что если использовать в этой формуле вместо неизвестных дисперсий ошибок квадраты остатков регрессии, то получается состоятельная оценка:
Необходимо отметить, что данная оценка является состоятельной только при отсутствии автокорреляции случайных ошибок (то есть как и было описано — в случае диагональной ковариационной матрицы случайных ошибок). В случае, если имеется ещё и автокорреляция, то можно использовать стандартные ошибки в форме Ньюи-Уеста.
ЗамечаниеПравить
Иногда приведённую формулу оценки ковариационной матрицы корректируют на множитель . Такая корректировка теоретически позволяет получить более точные оценки на малых выборках. В то же время на больших выборках (асимптотически) эти оценки эквивалентны.
См. такжеПравить
ЛитератураПравить
- Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. — М.: Дело, 2004. — 576 с.
- William H. Greene. Econometric analysis. — New York: Pearson Education, Inc., 2003. — 1026 с.