Это не официальный сайт wikipedia.org 01.01.2023

Реакция Фаворского — Википедия

Реакция Фаворского

Реакция Фаворского — метод синтеза 1-замещенных пропаргиловых спиртов присоединением терминальных алкинов к карбонильной группе. Открыта А. Фаворским в 1905 году при изучении взаимодействия фенилацетилена с кетонами в присутствии гидроксида калия[1][2].

Реакция Фаворского используется как метод синтеза ацетиленовых спиртов и α,β-ненасыщенных альдегидов и кетонов (через перегруппировку Мейера-Шустера):

Favorskii Reaction.png

Механизм реакцииПравить

Реакция идет по механизму нуклеофильного присоединения к карбонильной группе образующегося in situ при депротонировании терминального алкина ацетиленид-аниона:

R 1 R 2 C = O + R C C R 1 R 2 C ( O ) C C R ,     R = H , A l k , A r , O E t  

Реакцию обычно проводят с суспензиями гидроксида калия или амида натрия в апротонном растворителе (эфир, бензол, диметилформамид и т. п.) при температурах от −70 до +40 °C, при использовании легкокипящих соединений или ацетилена — под давлением 0,4—0,9 МПа. В некоторых модификациях вместо ацетилена используется карбид (ацетиленид) кальция в присутствии гидроксида калия.

Выходы составляют 40—60 %.

В реакцию вступают кетоны и некоторые альдегиды, в качестве алкинового компонента используются как замещенные терминальные алкины (в том числе и гетерозамещенные — например, этоксиацетилен[3]), так и ацетилен. В последнем случае вследствие депротонирования образующихся 1,1-замещенных пропаргиловых спиртов и их взаимодействия с карбонильным соединением могут образовываться и бис-аддукты — ацетиленовые 1,4-диолы:

R 1 R 2 C = O + H C C R 1 R 2 C ( O ) C C H  
R 1 R 2 C ( O ) C C H + B R 1 R 2 C ( O ) C C + B H  
R 1 R 2 C ( O ) C + R 1 R 2 C = O R 1 R 2 C ( O ) C C ( O ) R 1 R 2  

В случае алифатических альдегидов протекание реакции осложняется альдольной конденсацией под действием оснований, однако использование в качестве сорастворителя гидроксида калия гексаметилфосфотриамида позволяет синтезировать 1-монозамещенные пропаргиловые спирты с выходами до 70 %[4].

Другой модификацией реакции Фаворского, позволяющей провести энантиоселективное присоединение алкинов к альдегидам, является использование в качестве катализатора трифлата цинка в присутствии (+)-N-метилэфедрина и триметиламина во влажном толуоле, выходы в этом случае достигают 96 % при энантиоселективности 89—99 %[5].

Реакция Фаворского обратима, в основных условиях замещенные пропаргиловые спирты могут расщепляться на терминальный алкин и карбонильное соединение (ретрореакция Фаворского)[6].

Синтетическое применениеПравить

Третичные и вторичные ацетиленовые спирты, получающиеся в реакции Фаворского, в условиях кислотного катализа перегруппировываются в α,β-ненасыщенные кетоны и альдегиды (перегруппировка Мейера-Шустера):

Ретрореакция Фаворского используется в синтезе алкинов, в частности, при введении ацетиленовой группы в реакции Соногаширы, когда в качестве алкинового компонента используется коммерчески доступный 1,1-диметилпропаргиловый спирт, после чего от образовавшегося 3-замещённого диметилпропаргилового спирта отщепляется ацетон с образованием целевого алкина[7]:

R X + H C C - C ( C H 3 ) 2 O H R C C - C ( C H 3 ) 2 O H + H X  
R C C - C ( C H 3 ) 2 O H R C C H + ( C H 3 ) 2 C = O  

Промышленное применениеПравить

Реакция Фаворского лежит в основе одного из используемых в промышленности метода синтеза изопрена — сырья для получения синтетических каучуков. Сам метод синтеза изопрена из ацетилена и ацетона был предложен ещё самим Фаворским. В этом методе ацетилен конденсируется с ацетоном с образованием 1,1-диметилпропаргилового спирта с его последующим гидрированием до диметилвинилкарбинола, который далее дегидратируется в изопрен:

( C H 3 ) 2 C O + H C C H H C C - C ( C H 3 ) 2 O H  
H C C - C ( C H 3 ) 2 O H [ H ] H 2 C = C H - C ( C H 3 ) 2 O H  
H 2 C = C H - C ( C H 3 ) 2 O H C H 2 = C ( C H 3 ) C H = C H 2  

В промышленности используется процесс Snamprogetti/Enichem, в котором конденсация ацетона и ацетилена проводится в жидком аммиаке при 10—40 °C под давлением 20—25 атм с едким кали в качестве катализатора[8].

См. такжеПравить

  1. Favorsky, A.E. Action of potassium hydroxide on mixtures of ketones and phenylacetylene (англ.) // Zhurnal Russkago Fiziko-Khimicheskago Obshchestva : journal. — 1905. — Vol. 37. — P. 643—645.
  2. Favorsky, A.E. Action de la potasse caustique sur les mélanges des cétones avec le phénylacétylène (фр.) // Bulletin de la Société Chimique de France  (англ.) (рус. : magazine. — 1907. — Vol. 2. — P. 1087—1088.
  3. Heilbron, Ian; E. R. H. Jones, M. Julia, B. C. L. Weedon. 390. Studies in the polyene series. Part XXIX. Ethoxyacetylenic carbinols and their conversion into α,β-unsaturated aldehydes and acids (англ.) // Journal of the Chemical Society  (англ.) (рус. : journal. — Chemical Society, 1949. — P. 1823. — ISSN 0368-1769. — doi:10.1039/jr9490001823.
  4. Фаворская И. А., Шевченко З. А., Кошкина И. М. ЖОХ. — 1967, 3, 2075.
  5. Boyall, Dean; Doug E. Frantz, Erick M. Carreira. Efficient Enantioselective Additions of Terminal Alkynes and Aldehydes under Operationally Convenient Conditions (англ.) // Organic Letters  (англ.) (рус. : journal. — 2002. — Vol. 4, no. 15. — P. 2605—2606. — ISSN 1523-7060. — doi:10.1021/ol026282k.
  6. Diederich, François; Peter Stang. Metal-catalyzed Cross-coupling Reactions (неопр.). — John Wiley & Sons, 2008. — С. 226—227. — ISBN 9783527612208.
  7. Li, Jie Jack; Gordon W. Gribble. Palladium in Heterocyclic Chemistry: A Guide for the Synthetic Chemist (англ.). — Elsevier, 2000. — P. 211. — ISBN 9780080437040.
  8. Weissermel, Klaus; Hans-Jürgen Arpe. Industrial Organic Chemistry (неопр.). — John Wiley & Sons, 2008. — С. 117. — ISBN 9783527614592.