Это не официальный сайт wikipedia.org 01.01.2023

Плосконосая тришестиугольная мозаика — Википедия

Плосконосая тришестиугольная мозаика

Плосконосая тришестиугольная мозаика
1-uniform 10.png
Тип полуправильная мозаика
Конфигурация
вершины
Snub hexagonal tiling vertfig.png
3.3.3.3.6
Символ Шлефли sr{6,3} или s { 6 3 }
Символ
Витхоффа
[en]
| 6 3 2
Диаграмма
Коксетера — Дынкина
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Симметрии p6, [6,3]+, (632)
Симметрии вращения p6, [6,3]+, (632)
Обозначение Бауэрса Snathat
Двойственная
мозаика
Цветочная пятиугольная мозаика
Свойства вершинно транзитивная
хиральная

Плосконосая шестиугольная мозаика (или плосконосая тришестиугольная мозаика) — это полуправильная мозаика на евклидовой плоскости. В каждой вершине имеется четыре треугольника и один шестиугольник. Мозаика имеет символ Шлефли sr{3,6}. Плосконосая четырёхшестиугольная мозаика[en] связана с гиперболической мозаикой с символом Шлефли sr{4,6}.

Конвей назвал мозаику snub hextille (плосконосый шестипаркет), построенной с помощью операции отсечения углов и применённой к шестиугольному паркету (hextille).

Существует на плоскости 3 правильные и 8 полуправильных мозаик[en]. Только одна не имеет отражения в качестве симметрии.

Существует только одна однородная раскраска[en] плосконосой тришестиугольной мозаики (а именно, раскраска с индексами (3.3.3.3.6): 11213.)

Упаковка окружностейПравить

Плосконосая тришестиугольная мозаика может быть использована как упаковка кругов, если разместить круги одинакового радиуса с центром в каждой вершине. Любая окружность соприкасается с 5 другими окружностями упаковки (контактное число)[1]. Область решётки (красный ромб) содержит 6 различных окружностей. Шестиугольные дыры могут быть заполнены в точности одной окружностью, что приводит к плотной упаковке окружностей.

 

Связанные многогранники и мозаикиПравить

 
Существует одна связная 2-однородная мозаика, которая смешивает конфигурации вершин плосконосой тришестиугольной мозаики (3.3.3.3.6) и треугольной мозаики (3.3.3.3.3.3).

Варианты симметрииПравить

Эта полуправильная мозаика является членом последовательности усечённых многогранников и мозаик с вершинной фигурой (3.3.3.3.n) и диаграммой Коксетера — Дынкина      . Эти фигуры и их двойственные имеют (n32) вращательную симметрию[en] и являются мозаикой в евклидовой плоскости для n=6 и в гиперболической плоскости для всех больших n. Серию можно считать начинающейся с n=2 с одним набором граней, вырожденных в двуугольники.

n32 симметрии плосконосых мозаик: 3.3.3.3.n
Симметрия
n32
Сферическая Евклидоваn Компактная гиперболич. Паракомп.
232 332 432 532 632 732 832 ∞32
Плосконосые
фигуры
               
Конфигурация 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.∞
Фигуры              
Конфигурация V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.∞

Цветочная пятиугольная мозаикаПравить

Цветочная пятиугольная мозаика
 
Тип Мозаика, двойственная полуправильной мозаике
Список граней неправильные
пятиугольники
Конфигурация
граней
V3.3.3.3.6
Диаграмма
Коксетера — Дынкина
     
Симметрии p6, [6,3]+, (632)
Симметрии вращения p6, [6,3]+, (632)
Двойственная
мозаика
Плосконосая тришестиугольная мозаика
Свойства гране транзитивная
хиральная

Цветочная пятиугольная мозаика или розеточная пятиугольная мозаика является двойственной полуправильной мозаикой евклидовой плоскости. Это одна из 15 известных изоэдральных пятиугольных мозаик. Название мозаика получила за сходство шести пятиугольных плиток на цветок, лепестки которого расходятся из центральной точки[2]. Конвей назвал эту мозаику 6-fold pentille (6-кратный пятипаркет)[3]. Каждая грань мозаики имеет четыре угла 120° и один угол 60°.

Мозаика является двойственной для (однородной) плосконосой тришестиугольной мозаики[4] и имеет вращательную симметрию порядка 6-3-2.

 

ВариацииПравить

Цветочная пятиугольная мозаика имеет геометрические вариации с неравными длинами сторон и вращательной симметрией, которая является моноэдральной пятиугольной мозаикой типа 5. В одном из пределов длина ребра стремится к нулю и мозаика становится дельтоидной тришестиугольной мозаикой[en].

 
(См. анимацию)
 
a=b, d=e
A=60°, D=120°
 
Дельтоидная тришестиугольная мозаика
 
a=b, d=e, c=0
60°, 90°, 90°, 120°

Связанные мозаикиПравить

Двойственные однородные шестиугольные/треугольные мозаики
Симметрия: [6,3], (*632) [6,3]+, (632)
             
V63 V3.122 V(3.6)2 V36 V3.4.6.4 V.4.6.12 V34.6

См. такжеПравить

ПримечанияПравить

  1. Critchlow, 1970, с. 74—75, pattern E.
  2. Five space-filling polyhedra Архивная копия от 6 апреля 2013 на Wayback Machine by Guy Inchbald
  3. Conway, Burgiel, Goodman-Strass, 2008, с. 288.
  4. Weisstein, Eric W. Dual tessellation (англ.) на сайте Wolfram MathWorld.

ЛитератураПравить

СсылкиПравить