Обсуждение:Парадокс Эйнштейна — Подольского — Розена
Проект «Физика» (уровень ХС, важность средняя) Эта статья тематически связана с вики-проектом «Физика», цель которого — создание и улучшение статей по темам, связанным с физикой. Вы можете её отредактировать, а также присоединиться к проекту, принять участие в его обсуждении и поработать над требуемыми статьями. Уровень статьи по шкале оценок проекта: хорошая
Важность статьи для проекта «Физика»: средняя |
Проект «Астрономия» (уровень ХС, важность средняя) Эта статья тематически связана с вики-проектом «Астрономия», цель которого — создание и улучшение статей по темам, связанным с астрономией. Вы можете её отредактировать, а также присоединиться к проекту, принять участие в его обсуждении и поработать над требуемыми статьями. Уровень статьи по шкале оценок проекта: хорошая
Важность статьи для проекта «Астрономия»: средняя |
Эта статья входит в число хороших статей русской Википедии. См. страницу номинации (статус присвоен 20 июля 2009 года). |
Размышления обусловленные логикой. Пока мы раскладываем Вселенную на отдельно существующие элементы, мы теряем время необходимое для познания. Осознав и приняв очевидные истины, которые говорят о невозможности окончательного разложения Вселенной в виде полного математического описания, людьми будет обретен новый вектор познания. Раньше необходимость математического описания Вселенной была обусловленна тем, что это считалось ее непосредственным познанием. Полученные таким образом ответы, лишь породили множество новых нерешаемых вопросов. Странно, но накопление нерешаемых, с точки зрения математики и физики, вопросов считается учеными углублением в познании. Такой подход ограничивает мышление всего человечества и смещает вектор познания и развития. Физика, в нынешнем математическом понимании, никогда не объяснит внутри чего находилась сжатая Вселенная перед возможным Большим взрывом. Ни математическая физика, ни биология никогда не резложат душу на математические законы. Тот, кто считает, что наша математическая физика в будущем способна объяснить такие вещи - не просто заблуждаются, а имеют смещенный вектор познания, а это самая опасная состовляющая будущего развития. Все новомодные теории о математическом управлении людьми, теории о встраивании чипов в людей, теории о скорой кремниевой жизни людей - это очевидный вектор смещения познания, не только уводящий людей в невежество, но и разрушающий структуру Вселенной. Отдаление Души от тела человека и влияние на его оболочку и мозг, как раз и ведет к нарушению структуры Вселенной, как минимум по отношению к нашей планете. Некоторые люди задаются вопросом: а в чем смысл жизни? Но хоть кто-нибудь задался вопросом в чем смысл жизни всего общества??? А смысл общества заключается в познании Вселенной и создании достойного пространства для будущих поколений. Если нынешнее познание задает больше не решаемых вопросов, чем ответов, то нужно работать над его вектором. Одна из очевидных Истин: Если человечество само работает над своей эволюцией(например чипы и другое влияние), то оно вмешивается в замыслы Вселенных законов, частью которых является, ведь еще не описанные законы Вселенной являются не отрывной частью еще не осознанной реальности, из-за несовершенства математической физики, но математическая физика не может быть совершенна в принципе, поскольку никогда не способна дать ответы на вопросы ставящие ученых в тупик. Недавно появилась новомодная теория о голографической Вселеной. А это уже настоящий отрыв от реального, обьективного мира и погружение в невежество, подразумевающий под собой не то-что вектор смещения познания, а невозможность дальнейшего развития человечества из-за отсутсвия все новых необходимых знаний. Даже тот факт, что все в мире обладает своей вибрационной частотой, не может говорить о голографичности Вселенной. Вибрационная частота любого обьекта - это всего-лишь энергетическая состовляющая, т.е. одна из неразделимых частей объекта, но никак не его целое. Помимо всех вытекающих отсюда следствий, так же можно прийти к выводу, что большое заблуждение считать вибрационные частоты человека его Душой. Источник: Логика+философия=МУДРОСТЬ--->>>Огромная сила познания. 109.203.211.180 04:28, 16 марта 2012 (UTC)
- Не понял каки образом две монеты на разных концах галактики дают одинаковые последовательности и почему на другом конце не могут интерпритировать битсрим.
Сравните со следующей моделью сверхсветовой передачи информации: берём стрелу или карандаш, ломаем пополам, кладём в части конверты и рассылаем в два противоположных конца вселенной (разделение квантово-сцепленных частиц). Распечатывая конверт, получатель немедленно узнают содержимое другого. Или говоря "научно": поскольку при этом измерении частица А коллапсирует в некое новое состояние, то и запутанная с ней частица B также коллапсирует в некоторое определённое состояние, именно в этот момент происходит передача «квантовой части» информации. Вот вам пожалуйста сверхсветовая квантовая телепортация механическими телами :)
- Что-то не очень ясно, как, получив в конверте полкарандаша, можно сразу догадаться о том, что в другом конверте... Antikon 13:45, 1 декабря 2005 (UTC)Ответить[ответить]
И причем тут физика банальная логика) --Gregory B. 20:34, 11 октября 2009 (UTC)Ответить[ответить]
«Таким образом, квантовая механика и существование запутанных состояний доказывают существование индетерминизма в природе» (с) Димс - закостенелый динозавр. Не желание принимать несостоятельность неравенств Белла вызвано его философскими убежедениями о "свободе воли". Кому интересно знать, почему истинное положение дел как раз наоборот - природа является детерминированным автоматом - читает статью [Digital Physics][1]. В детерменированном мире эксперементатор не может принимать решения самостоятельно, оно предопределено, проэтому проверка неравенств Белла не более чем интересный эксперемент, но ничего не доказывающий.--javalenok 00:54, 8 декабря 2005 (UTC)Ответить[ответить]
Предположим мы хотим передать "0" с одной планеты на другую: ждемс выпадания "1", например 5 раз подряд, следущие выпадание монеты на другой планеты с повышенной вероятностью будет "0". Че не так?
--85.192.48.174 17:50, 3 сентября 2006 (UTC)yusОтветить[ответить]
С передачей информации быстрее скорости света ситуация несколько сложнее. Если на бумаге отпечатался орёл, и её положили в сейф не глядя, то всё равно на самом деле там орёл. Следуя этой логике, если частицы изначально взаимодействовали и были в смешанном состоянии, то к тому моменту, когда их разнесли на огромню дистанцию, они уже должны находиться в каком-то чистом состоянии. (Мы просто не знаем, в каком именно.) Однако эксперименты по проверке неравенств Белла показали, что частицы остаются в смешанном состоянии. Когда в системе отсчёта центра масс над одной из частиц проводится измерение, вся система одновременно переходит в чистое состояние. Это очень нетривиально.—contra_ventum 23:12, 12 февраля 2007 (UTC)Ответить[ответить]
В самом деле, представим себе, что на двух планетах в разных концах Галактики есть две монетки, выпадающие всегда одинаково. Если запротоколировать результаты всех подбрасываний, а потом сравнить их, то они совпадут. Сами же выпадания случайны, на них никак нельзя повлиять. Нельзя, например, договориться, что орёл — это единица, а решка — это ноль, и передавать таким образом двоичный код. Ведь последовательность нулей и единиц будет случайной и на том и на другом «конце провода» и не будет нести никакого смысла.
- самим фактом наличия и отсутствия изменений можно передавать информацию. одну монетку периодически бросают, а другую намеренно кладут нужной стороной.
Не понялПравить
А в чем, собственно, парадокс?
Предположим, мы измерили импульс частицы А, и, значит, знаем импульс частицы В. После мы измеряем координаты частицы В, и, как утверждается, знаем её импульс и координату. Однако измерение координаты опять таки изменяет импульс частицы В, а значит, известные нам сведения устаревают и мы уже не знаем обеих величин. Суть в том, что в момент времени, когда мы измеряем координату В, импульсы частиц А и В перестают быть равными. Все законы соблюдены, так как рассчитанная величина уже не верна. Кто нибудь, обьясните что я не понял, очень, наверное, глупо выгляжу?.. --Тём Тимыч 17:41, 19 марта 2010 (UTC)Ответить[ответить]
- Парадокс в том, что измерив импульс частицы А, мы знаем импульс частицы Б, которая может находиться от А на огромном расстоянии и вообще никак с ней не взаимодействовать.--Yaroslav Blanter 18:20, 19 марта 2010 (UTC)Ответить[ответить]
- В лазере фотон А воздействуя на возбуждённый атом рождает запутанный с ним фотон Б с равным импульсом, поэтому наоборот их равенство при измерении кажется естественным, а не парадоксальным, несмотря на расстояние при измерении, ведь рождение частицы Б произошло в точке пролёта частицы А. И любые другие запутанные частицы образуются с явным локальным взаимодействием. Voproshatel (обс.) 07:40, 5 марта 2021 (UTC)Ответить[ответить]
- Сначала немного оффтоп -- парадокс в том, что обсуждаемая статья была выбрана в "хорошие", не удовлетворяя при этом разумным требованиям ясности и полноты изложения (и местами даже вводит читателей в заблуждение -- как, например, в описании позиции Фока). А если по существу вопроса -- то (коротко) парадокс заключается в том, что квантовомеханическое описание кардинально отличается от классического (наличием классически не описываемого дальнодействия). -- Badger M. 19:55, 23 марта 2010 (UTC)Ответить[ответить]
Не согласен, в этом парадокса нет. Их импульсы связаны по законам квантовой механики. Скажем, мы распилили палку длиной С на палки А и В, причем С - конкретное известное нам число. Разве парадокс, что мы можем найти длину палки В, измерив палку А, хотя это совершенно разные палки? ))) —Тём Тимыч 08:14, 20 марта 2010 (UTC)Ответить[ответить]
- Все правильно, ни какого парадокса как такового нет. Но для теории квантовой механики (в рамках теории) это парадокс, т.к. там утверждается, что такое узнать для частиц нельзя. И действительно нельзя в общем случае (например, когда палку режим по диагонали, а мерим по прежнему не учитывая этого), но при ряде условий можно (если палку разрезать перпендикулярно). S.J. 10:53, 20 марта 2010 (UTC)Ответить[ответить]
- Предположим A и B всегда находятся в чистом состоянии, в котором их импульс определён (но поначалу неизвестен наблюдателю). Одновременное измерение импульсов частиц даст точную информацию об их сумме (нуль), а измерение координат ничего не скажет о положении центра масс. Если же A и B в зацепленном состоянии, то любой эксперимент выявит соответствующий параметр центра масс, однако при этом создаётся впечатление, что каждая из невзаимодействующих частиц "знает" об типе измерения, которое проводится с другой частицей.—contra_ventum 07:32, 22 марта 2010 (UTC)Ответить[ответить]
- Парадокс возникает при неверном понимании соотношения неопределённости для координаты и импульса. Из него следует, что нельзя одновременно точно измерить x и p. Однако, в квантовой механике это соотношение выводится для дисперсий, которые должны вычисляться по, вообще говоря, бесконечному количеству экспериментов. Запрета одновременного измерения x и p в одиночном наблюдении в мат.структуре квантовой механики нет. Хотя конечно может возникнуть вопрос - является ли одиночное измерение - измерением? Но это уже другая история. --Source 19:26, 23 марта 2010 (UTC)Ответить[ответить]
- Подразумевалось, "неверное понимание" тех, кто считает, что измерительная процедура, описанная ЭПР "обходит" соотношение неопределённости, и, следовательно, квантовая теория неполна. Смотрите в следующем разделе более развёрнутую аргументацию.--Source 18:05, 26 марта 2010 (UTC)Ответить[ответить]
- Вне зависимости от дальнейших аргументов утверждение "..Парадокс возникает при неверном понимании.." логически некорректно (парадокс не возникает из каждой ошибки). Ср. определение слова парадокс (из БСЭ) -- ".. Парадокс (от греч. parádoxes — неожиданный, странный), неожиданное, непривычное (хотя бы по форме) суждение (высказывание, предложение), резко расходящееся с общепринятым, традиционным мнением по данному вопросу. .." То есть, ключевые слова тут "странный, неожиданный", а не "неверный, ошибочный". -- Badger M. 19:06, 26 марта 2010 (UTC)Ответить[ответить]
- P.S. Дополнение: "..парадокс не возникает из каждой ошибки.." и возникает не только из ошибок. -- Badger M. 19:32, 26 марта 2010 (UTC)Ответить[ответить]
- Подразумевалось, "неверное понимание" тех, кто считает, что измерительная процедура, описанная ЭПР "обходит" соотношение неопределённости, и, следовательно, квантовая теория неполна. Смотрите в следующем разделе более развёрнутую аргументацию.--Source 18:05, 26 марта 2010 (UTC)Ответить[ответить]
Это пояснение читателям непонятноПравить
Ув. эксперты, будьте так добры, опишите реальный, воспроизводимый в лабороторных условиях, физический эксперимент демонстирующий эффект нелокальности и как в нем проявляется парадкс ЭПР. — Эта реплика добавлена с IP 92.112.26.84 (о) 12:13, 3 июля 2008 (UTC)Ответить[ответить]
- Берём спин-синглет и разносим частицы на большое расстояние вдоль оси x, чтобы исключить возможность их локального взаимодействия. Проводим (почти) одновременное измерение спина обеих частиц вдоль оси z. Вариант 1: частицы по-прежнему образуют синглет. Тогда оба измерения будут иметь 100% негативную корреляцию — эффект нелокальности. Вариант 2: синглет спонтанно разрушился, и частицы находятся в чистом состоянии │n〉│–n〉, где n — спин в произвольном направлении. Тогда вероятность получения при измерении результата +1/2 или –1/2 зависит от угла между n и осью z. Так как измерения независимы, то получается, что в среднем антикорреляция будет уже меньше 1 (если не ошибаюсь, 2/3). В точности такие эксперименты пока никому не удавались, проводились только эксперименты по проверке неравенств Белла на фотонах.—contra_ventum 21:35, 4 июля 2008 (UTC)Ответить[ответить]
- "корреляцию — эффект нелокальности"
- Тут дырка. Читателю совсем не очевидно, что корреляция значений - последствие именно нелокальной корреляций, а не изначальной корреляции параметров. Это нужно явно показать. 92.112.15.135 13:37, 8 июля 2008 (UTC)Д.Ответить[ответить]
- Это верно, причины могут быть различными. Однако у любой корреляции, вызыванной локальными эффектами, есть теоретический максимум, который меньше максимума для нелокальной корреляции. Поэтому если эксперимент показывает корреляцию, которая попадает в интервал между этими пределами, то она носит нелокальный характер. Например, Вариант 2а: то же, что в вар. 2, но направление вектора n обладает анизотропией. Эксперимент повторяют, повернув измерительные приборы вдоль оси y, затем вдоль оси x. По крайней мере вдоль одной из трёх осей корреляция не должна превышать изотропный предел из вар. 2. Так, если n всегда вдоль оси z, то при измерении вдоль оси y корреляция будет вообще нулевая. В то же время квантовая корреляция (вар. 1) будет по-прежнему 1.—contra_ventum 20:16, 9 июля 2008 (UTC)Ответить[ответить]
В качестве простейшей иллюстрации рассмотрим следующий пример. Возьмём 1000 окрашенных монет и бросим их на 1000 листов бумаги. Вероятность того, что на случайно выбранном нами листе отпечатался «орёл», равна 1 / 2. Между тем для листов, на которых монеты лежат «решкой» вверх, та же самая вероятность равна 1 — то есть у нас имеется возможность косвенно устанавливать характер отпечатка на бумаге, глядя не на сам лист, а только на монету. Однако ансамбль, связанный с таким «косвенным измерением», совершенно отличен от исходного: он содержит уже не 1000 листов бумаги, а лишь около 500!
Что за бред? Кто автор этого маразма??? 85.140.245.206 04:27, 19 декабря 2008 (UTC)Ответить[ответить]
Пример с законом импульсаПравить
гипнотизирующий, но не объясняющий. Предполагается что мы *точно* знаем импульс исходной частицы С. Но откуда? привычно было бы дельта С = дельта А + дельта В. Тут видимо нужен ещё какой-то логический ход в пояснении, либо совсем другой пример. Просветите пожалуйста. Korovyur 08:49, 21 января 2009 (UTC)Ответить[ответить]
Допустим, две одинаковые частицы и образовались в результате распада третьей частицы . В этом случае, по закону сохранения импульса, их суммарный импульс должен быть равен[1] исходному импульсу третьей частицы , то есть импульсы двух частиц должны быть связаны. Это даёт возможность измерить импульс одной частицы ( ) и по закону сохранения импульса рассчитать импульс второй ( ), не внося в её движение никаких возмущений.
Выше верное замечание, что непонятно как может быть заранее известен импульс исходной частицы . Voproshatel (обс.) 08:27, 5 марта 2021 (UTC)Ответить[ответить]
Рецензия с 4 по 22 мая 2009 годаПравить
Существенно переписал статью и добавил доп. информацию - посмотрите на сколько она стала понятной и полной для выставления в хорошие. SergeyJ 23:10, 4 мая 2009 (UTC)Ответить[ответить]
- По оформлению. При просмотре в моем браузере происходит наложение блока цитаты на изображение (не видна подпись). Момент два: может переименовать примечания в сноски? Siver-Snom 20:17, 7 мая 2009 (UTC)Ответить[ответить]
- Действительно в IE просходит наложение - но я не знаю что с этим делать, в Опере все нормально ... может кто из тех. поддержки разберется ... "Примечания" на сколько я знаю более стандартное название ... SergeyJ 00:40, 8 мая 2009 (UTC)Ответить[ответить]
- Исправлено (наползание цитат).--Lunarian 07:42, 8 мая 2009 (UTC)Ответить[ответить]
- В целом написано интересно и содержательно. Но надо принимать во внимание, что тема статьи открыта, дискуссионна, и встречаются полярные мнения. Поэтому неплохо бы увеличить число подтверждающих сносок, а по возможности - расширить число представленных мнений. LGB 12:29, 8 мая 2009 (UTC)Ответить[ответить]
1927 годПравить
Ставя запрос источника я сомневался не в том, что именно тогда проходил 5й конгресс, а то, что именно тогда был сформирован парадокс ЭПР. -- toto 17:26, 17 июня 2009 (UTC)Ответить[ответить]
- Ну, формально статья вышла в 1935 - как и указанно в статье, но уже в 1927 году завязался спор Эйнштейна с Бором, среди которых и были попытки представить идеи (думаю, конечно, хоть и не в полноценном виде, но идея уже появилась тогда). У Вас есть другая информация ? Или Вы просто хотите точно знать, что Эйнштейн уже говорил об этом на этом конгресе или не говорил ? SergeyJ 18:56, 17 июня 2009 (UTC)Ответить[ответить]
- Точно хочу знать, был он сформулирован в 1927 году или нет. Я смотрю по книге "Человек и квантовый мир", автор М.Б. Менский. Спор Бора и Эйнштейна проходил на конгрессах 1927 и 1930 годов, разных мысленных экспериментов было несколько, но все их Бор успешно разрешил в свою пользу. И только в 1935 (через 5 лет) Эйнштейн публикует ЭПР, выводы из которого обсуждаются до сих пор. Цитирую: «Таким образом, работа Эйнштейна — Подольского — Розена не опровергала квантовую механику в силу её неполноты (как, может быть, ожидали авторы), но в большей степени способствовала потрясению её основ. В этой работе впервые критически обсуждалось понятие реальности, то есть элемент теории, который до этого принимался как самоочевидный». Т.е. получается, что это качественно новый эксперимент. Если он действительно был сформулирован в 1927 году, то нужен источник. -- toto 22:10, 17 июня 2009 (UTC)Ответить[ответить]
- Данное утверждение написано не мной, я доверился первоначальным авторам и оставил его. Возможны Вы правы, и утверждение следует из неточности о том какие именно эксперименты обсуждались на 5-ом конгрессе (я тоже где то читал воспоминания (кого и где уже не вспомню), как проходил данный конгресс - типа Эйнштейн каждое утро придумывал новый эксперимент, а к вечеру Бор его парировал). Не могли бы Вы подправить статью, желательно вставив приводимую вами цитату (сославшись на ваш источник полностью), тем самым показав, что история вопроса зародилась на 5-ом конгрессе, и только спустя несколько лет был полноценно сформулирован ЭПР-парадокс ? SergeyJ 23:10, 17 июня 2009 (UTC)Ответить[ответить]
Тире в названии статьиПравить
Согласно Правилам русской орфографии и пунктуации 1956 года (то бишь последним официально зафиксированным правилам русской пунктуации), пробелы вокруг тире не ставятся. Использование длинного тире тоже кажется сомнительным (а среднее тире, как написано в самой википедии, пробелами вовсе никогда не обрамляется).
Представляется разумным изменить неудобочитаемое название статьи на Парадокс Эйнштейна–Подольского–Розена. Для сравнения, в пятитомной Физической энциклопедии тире длинные, но пробелов нет (есть шпации). Pasteurizer 16:46, 23 июля 2009 (UTC)Ответить[ответить]
- А вот здесь сказано, что пробелы ставятся. И по личным ощущениям длинные тире с отбивкой пробелами выглядят лучше, нежели короткие в вашем варианте. Так что я Против подобного переименования. --Ashik talk 17:37, 23 июля 2009 (UTC)Ответить[ответить]
- Пробелы ставятся вокруг длинных тире - достаточно открыть любую книжку, примеры почти на каждой странице. С другой стороны, написание ЭПР с длинными тире и пробелами я за всю свою жизнь видел только тут в ВП. В названии должны стоять дефисы (которые про правилам пробелами не выделяются) как и предложил Pasteurizer. Ausweis 18:20, 24 июля 2009 (UTC)Ответить[ответить]
- Не надо менять:
contra_ventum 20:12, 24 июля 2009 (UTC)Ответить[ответить]Тире ставится между двумя или несколькими именами собственными, совокупностью которых называется какое-либо учение, научное учреждение и т. п., например: Физический закон Бойля — Мариотта. [2]
- Интересное замечание. С одной стороны, в общем курсе Сивухина 1980 года в подобных случаях используются тире с пробелами, Вейля 1986 и во многих других книгах постарше - тоже (В некоторых - только тире, без пробела). С другой стороны, в статье 1999 года в УФН ЭПР пишется с дефисом (но выделено пробелами), а с 1997 года в литературе начинается использование тире без пробелов (Шубин 2001) или дефисов без пробелов (Скайли-Зубайри 1997, Демидов 1997, Умнов 2004). Литературы позже 1998 с использованием тире и пробелов у меня нету. Что же до источника русяз - цитата с их сайта: "Платная Справочная служба русского языка (ССРЯ) создана в ноябре 1998 года как «народный сервис», оказывающий комплексные — устные и письменные — услуги по всем вопросам, связанным с языком и текстом: прежде всего русским, а также иностранными и классическими.". На этой же странице товарищи пишут : "Среди самых авторитетных изданий можно назвать «Энциклопедический словарь Брокгауза—Ефрона»". Без пробелов )). Доверие после такого слехка пропадает к таким источникам. Ausweis 12:22, 25 июля 2009 (UTC)Ответить[ответить]
- То же написано в § 360 Правил русского правописания орфографического справочника Соловьева (Соловьев Н. В. Русское правописание / 2-е изд. СПб.: Норинт, 1997. С. 811): «Тире ставится между двумя или несколькими именами собственными, входящими в наименование какого-либо учения, научного явления и т. п., заменяя по смыслу союз и, например: закон Бойля — Мариотта». Тот же пример в § 179 на сайте Грамота.Ru [3]. contra_ventum 03:25, 26 июля 2009 (UTC)Ответить[ответить]
- Та я с этим не спорю, на самом деле. Но вот в литературе, после 1998 я такого не вижу ваще (а до 1998 - наоборот - только так). Мож что поменяли с тех пор? Ausweis 12:44, 26 июля 2009 (UTC)Ответить[ответить]
- АПД: смог откопать еще несколько книжек после 2000 где используется и тире и пробелы. Не все так однозначно и наверное таки стоит оставить как есть. Ausweis 13:10, 26 июля 2009 (UTC)Ответить[ответить]
- То же написано в § 360 Правил русского правописания орфографического справочника Соловьева (Соловьев Н. В. Русское правописание / 2-е изд. СПб.: Норинт, 1997. С. 811): «Тире ставится между двумя или несколькими именами собственными, входящими в наименование какого-либо учения, научного явления и т. п., заменяя по смыслу союз и, например: закон Бойля — Мариотта». Тот же пример в § 179 на сайте Грамота.Ru [3]. contra_ventum 03:25, 26 июля 2009 (UTC)Ответить[ответить]
- Интересное замечание. С одной стороны, в общем курсе Сивухина 1980 года в подобных случаях используются тире с пробелами, Вейля 1986 и во многих других книгах постарше - тоже (В некоторых - только тире, без пробела). С другой стороны, в статье 1999 года в УФН ЭПР пишется с дефисом (но выделено пробелами), а с 1997 года в литературе начинается использование тире без пробелов (Шубин 2001) или дефисов без пробелов (Скайли-Зубайри 1997, Демидов 1997, Умнов 2004). Литературы позже 1998 с использованием тире и пробелов у меня нету. Что же до источника русяз - цитата с их сайта: "Платная Справочная служба русского языка (ССРЯ) создана в ноябре 1998 года как «народный сервис», оказывающий комплексные — устные и письменные — услуги по всем вопросам, связанным с языком и текстом: прежде всего русским, а также иностранными и классическими.". На этой же странице товарищи пишут : "Среди самых авторитетных изданий можно назвать «Энциклопедический словарь Брокгауза—Ефрона»". Без пробелов )). Доверие после такого слехка пропадает к таким источникам. Ausweis 12:22, 25 июля 2009 (UTC)Ответить[ответить]
- Не надо менять:
Соотношение неопределённости и парадокс ЭПРПравить
Просмотрев внимательнее статью, я понял, что необходимо расширить мою реплику из предыдущего раздела. Статья хорошая, но разъяснение парадокса фактически не дано. Философские ответы Бора, безусловно, важны, но физический парадокс должен разрешаться в физической плоскости, а не философской. На мой взгляд, возможна следующая редакция:
На самом деле, в мысленном эксперименте ЭПР производится одиночное измерение координаты и импульса, что не противоречит квантовой механике. Соотношение неопределённости справедливо для дисперсий, вычисленных по большому числу экспериментов [Ландау]. Ситуация аналогична интерференции одиночных электронов [Фейнман]. При прохождении через интерференционную решётку, каждый из них засвечивает единственную точку на фотопластинке, и лишь ансамбль электронов приводит к интерференционной картине. Если эксперимент ЭПР провести много раз, получив набор значений координат и импульсов, и по ним вычислить дисперсии, то их произведение будет удовлетворять неравенству Гейзенберга. Результат же одиночного измерения, проводящегося в эксперименте ЭПР, не имеет отношения к соотношению неопределённости. --Source 06:10, 25 марта 2010 (UTC)Ответить[ответить]
- Очень хорошие пояснение - добавьте его в статью (желательно с более точными ссылками, которые вами указаны как [Ландау], [Фейнман] ). S.J. 08:09, 25 марта 2010 (UTC)Ответить[ответить]
- Согласно этому аргументу, если мы производим два эксперимента по измерению импульса над одной частицей, результаты в общем случае (при ненулевой дисперсии) должны отличаться. Поскольку частицы A и B представляют собой два симметричных волновых пакета, одновременное измерение их импульсов равносильно двум экспериментам над одной частицей. Отсюда следует, что результаты измерений могут быть различными. Однако специфика ЭПР в том, что A и B в зацепленном состоянии, и результаты всегда будут одинаковыми (по модулю). Вот это и странно: то ли в вашем аргументе какая-то ошибка (что ставит под сомнение вытекающее из него соотношение неопределённостей), то ли невзаимодействующие частицы A и B как-то "чувствуют" друг друга.—contra_ventum 21:21, 25 марта 2010 (UTC)Ответить[ответить]
- Интересно то, что во всех экспериментах производится как раз n измерений, а не единичные. S.J. 22:55, 25 марта 2010 (UTC)Ответить[ответить]
- Я хочу сказать, что с точки зрения классической физики понятно, почему импульсы противоположны, но непонятно, почему нельзя извлечь определённую информацию об импульсе и координате. С точки зрения квантовой механики понятно, почему данные по измерению импульса или координаты должны иметь разборос, однако появляется на первый взгляд загадочный эффект нелокальности, из-за которого померянные значения импульсов частиц оказываются в точности противоположными.—contra_ventum 01:59, 26 марта 2010 (UTC)Ответить[ответить]
- Интересно то, что во всех экспериментах производится как раз n измерений, а не единичные. S.J. 22:55, 25 марта 2010 (UTC)Ответить[ответить]
- Невзаимодействующие частицы, находящиеся в общем состоянии, которое описывается двухчастичной волновой функцией действительно ""чувствуют"" момент измерения, с какой бы частицей он не проводился. Конечно, кавычек вокруг слова "чувствуют" можно и добавить. После измерения, единая волновая функция редуцирует в новое состояние. Макроскопическое расстояние между разлетевшимися частицами подчёркивает необычность ситуации, но не принципиально (по крайней мере, пока мы рассуждаем в рамках нерелятивистской квантовой механики). Сама проблема редукции, на сколько мне известно, до конца не решена. Трудности связаны с тем, что эволюция во времени волновой функции описывается уравнением Шрёдингера, а процесс измерения проводится классическим прибором и находится как бы в интерпретационной части квантовой теории. Существует точка зрения, что это недостаток теории, и процесс измерения также должен описываться квантовыми эволюционными уравнениями. Но всё это больше относится к бедному коту Шредингера, а не к ЭПР.
- По поводу извлечения информации. После измерения импульса одной из частиц, состояние второй начинает описываться волновой функцией соответствующей определённому импульсу. Поэтому рассуждения ЭПР можно упростить. Пусть есть не пара частиц, а одна частица, в состоянии . Сколько бы раз мы не измеряли её импульс, будет получаться одно и тоже значение. Поэтому конечно "существует элемент физической реальности" того, что частица обладает этим импульсом. Теперь мы можем измерить координату. В одиночном эксперименте получится определённое значение x. Это не означает, что мы определили одновременно x и p. После измерения х, можно снова измерить p, и получить значение, сколь угодно отличающееся от начального. Соотношение неопределённости возникает, когда этот эксперимент повторяется с ансамблем (множеством частиц в одном состоянии). Если исходное состояние имеет фиксированное значение импульса, то получающиеся в каждом измерении точные значения координат частиц будут самыми разнообразными, так как их дисперсия в данном случае бесконечна. --Source 10:08, 26 марта 2010 (UTC)Ответить[ответить]
В объяснении выполнения соотношения неопределенности содержится ошибка: они выполняются НЕ потому, что частица меняет свое состояние при измерении её координаты/импульса. Даже если вы будете проводить численный эксперимент, в котором при измерении одного параметра состояние частицы не меняется, вам не удастся нарушить соотношения. Дело в том, что для перехода от координатного представления в импульсное совершается преобразование Фурье, а для преобразования Фурье уже характерно выполнение соотношения неопределенности. 91.203.168.138 15:40, 22 декабря 2011 (UTC)Ответить[ответить]
Нету некаких "две частицы" это часть одной волны или плотности вероятности нахождения частицы, после измирения импульса отнасительна "наблюдателя" суперпозиция спина одной "частицы" колапсирует и возникает вектор поляризаций отнасительно пространстаеных координат, соотвественно вторая "частица или точнее выразится часть волны" обретает противоположную поляризаций. Вне зависимости от расстояния. Вот и обьяснение пародокса нарушения принципа "локальности" Malfurioneledan (обс.) 09:06, 29 марта 2022 (UTC)Ответить[ответить]
Объяснение парадоксаПравить
Скопировано со страницы обсуждения Source :
Посмотрел по Вашей просьбе текст с "Объяснением парадокса". Честно говоря, мне он не понравился. Никакого объяснения парадокса в общем-то там нет. Да его и не может быть на таком простом уровне. Главное в парадоксе, что он показывает нелокальность квантовой механики и это давно экспериментальный факт. Рассуждения о единичном измерении ничего не проясняют, поскольку в квантовой теории измерений в таких случаях подразумеваются ансамблевые испытания - мы делаем многократные аналогичные измерения при одинаковых условиях опыта. И соотношения неопределённостей прекрасно будут выполнятся (также как и для электрона). В частности, так в ансамблевых экспериментах строится функция Вигнера для разных хитрых квантовых состояний и по ней восстанавливается волновая функция, хотя измерить ее для одной частицы в принципе нельзя. Недавно, кстати, кота Шредингера для механического микроосциллятора так пронаблюдали. И вообще точнее говорить не о статистике и среднеквадратичном, а о вероятностях и дисперсиях гауссовых состояний. Кроме того, скажем, в современной интерпретации парадокса с поляризацией никто не мешает после измерения поляризации проверять результат сколько угодно раз, поставив сколько угодно поляризаторов, сонаправленных первому. Не нравятся и слова "В квантовой механике нет явного запрета на одновременное одиночное измерение x и p.". Формально, конечно, запрета нет (хотя как это сделать, не представляю), но результат такого воздействия на объект и полученные значения не будут иметь никакого отношения к измеряемому начальному состоянию, то есть это не измерение. Ссылки на Ландау тоже не совсем к месту. У него в "Квантовой механике" вообще теория квантовых измерений очень слабо написана, фактически ее там нет. Могу порекомендовать очень простой рассказ об ЭПР в лекциях наших профессоров (Глава 3), можно, кстати, и сослаться в статье. Халили - один из соавторов классической монографии "Quantum measurement" и вообще, возможно, лучше всех в мире в квантовой теории измерений разбирается. -- Astrohist 20:41, 17 мая 2010 (UTC)Ответить[ответить]
- Жаль, что не согласны :). Я просмотрю ссылку, и попытаюсь чётче выразить позицию. Возможно раздел нужно переписать. Замечу пока, что обсуждение физических парадоксов (таких как Парадокс близнецов или ЭПР) с разными людьми показывает, что, обычно, существует множество точек зрения на то, в чём собственно состоит парадокс. От сюда и неприятие того или иного «объяснения». Договориться о сути парадокса сложнее, чем дать его объяснение. В этом заключается самая парадоксальная особенность парадоксов. :) --Source 10:00, 18 мая 2010 (UTC)Ответить[ответить]
Прежде всего, все мои последующие комментарии не написаны в защиту текста «Объяснения парадокса». Более того, там была изложена моя точка зрения, так что в известной мере это ОРИС. Поэтому, если кто-либо, с учётом этого обсуждения, текст перепишет — с моей стороны возражений не будет.
Прежде чем давать какие-либо объяснения парадокса, необходимо сформулировать, в чём он состоит. Мне видятся два варианта.
1. Противоречие с соотношением неопределённости (СН). Приведу цитату из ссылки, которую любезно предоставил Astrohist (замечательные лекции Вятчанина С. П. и Халили Ф. Я.):
… мы измеряем точно, допустим, импульс частицы 1. Но из-за наличия корреляции (переплетенности) мы получаем точную информацию об импульсе частицы 2. Если теперь одновременно с первым измерением мы точно измерим координату частицы 2, то в результате будем знать точно координату и импульс частицы 2, что противоречит соотношению неопределённости.
В такой формулировке не уточняется смысл термина «измеряем». Возможны два варианта:
1.1 Пусть, как это было у ЭПР и Бора, речь идёт об однократном измерении координаты и импульса у одной пары частиц. Тогда «противоречить соотношению неопределённостей» это не может. Корень проблемы в обширных и восходящих к Бору размышлениях о влиянии прибора на частицу в одиночном измерении, в результате которого нельзя одновременно измерить координату и импульс. В тоже время, в мат.аппарате кв.механики «неопределённости» x и p имеют абсолютно однозначный смысл — среднеквадратичные отклонения. Вычислить их на одном эксперименте невозможно. Соотношение неопределённостей носит статистический характер. Поэтому и противоречия возникнуть не может.
1.2 Если термин «измерение» имеет смысл многократных повторов этого эксперимента над ансамблем пар частиц, то соотношение неопределённостей будет отлично работать. Повторяя эксперимент, мы будем получать (p1,x1), (p2,x2),… Проведя усреднение и вычислив дисперсии, мы придём к СН. Поэтому противоречия опять же нет.
В результате, парадокс в подобной форме легко разрешается.
2. Нелокальность. Опять цитата. Источник тот же (вместо x и p — проекции спинов частиц A и B в синглетном состоянии):
Во время измерения частицы не взаимодействуют, поэтому не может иметь места никакое реальное изменение состояния частицы B из-за того, что произведено измерение над частицей A. <…> следовательно, спин частицы B есть элемент физической реальности.
С точки зрения кв.механики исходная посылка неверна. Хотя частицы и не взаимодействуют, их система описывается единой волновой функцией и любое измерение это состояние изменит. Это странно с позиции классической, но логического противоречия в себе не содержит.
Второй вопрос как это согласуется с принципами теории относительности? С точки зрения кв.механики редукция волновой функции происходит «мгновенно». Естественно, никакую информацию передать таким образом нельзя. Но некоторая проблема есть. Например, если неподвижные удалённые наблюдатели A и B одновременно измеряют cпины (один Sx, а второй Sy), то редукция происходит к смешанному состоянию из двух независимых частиц. Из другой инерциальной системы эти события неодновременны. К чему редуцирует волновая функция? Возможно, редукция является понятием относительным (как и многое в СТО). Ничего плохого (парадоксального) в этом также нет. --Source 19:38, 18 мая 2010 (UTC)Ответить[ответить]
Второй вопрос как это согласуется с принципами теории относительности? С точки зрения кв.механики редукция волновой функции происходит «мгновенно»
Очень интересное замечание. Редукция волновой функции не может происходить «мгновенно» потому что само "измерение" как раз не мгновенно. Наши глаза фиксируют вспышки света содержащие сотни фотонов. Для того чтобы мы могли определить глазами положение (координату) фотона (он попал в глаз), мы должны усилить сигнал. Поставить на пути фотона фотоумножитель. Усиление сигнала характерно для всех измерителей квантовых частиц. На мой взгляд в процессе измерения мы закачивая энергию в сигнал как раз и вызываем "редукцию" волновой функции. Повышаем вероятность, что в момент "измерения", частица имела определенное случайное выбранное квантовое состояние. И обнуляем все остальные вероятности. С этой точки зрения парадокс кота Шредингера легко объясним. Механизм убивающий кота в результате квантового события усиливает сигнал до макроуровня. То есть не что иное как "измеритель". Открывая ящик с котом, никаких смешанных состояний "жив, не жив" мы не получим. Так как "измерение-убийство кота" уже состоялось и кот пребывает в одном определенном состоянии. С этой точки зрения парадокс разрешается. Однако самое интересное получим продолжив мысленный эксперимент с глазом. Сто фотонов с фотоумножителя это квантовое событие. Есть ненулевая вероятность что фотон на фотоумножителе усилился и есть так же ненулевая вероятность что он там и не был. То есть "измерение" не закончилось. Дальше в качестве усилителя сигнала выступает сначала глаз, переводя свет в электрический импульс. Потом мозг расшифровывающий импульс в "вспышка была", "не было" и "ФИГ ЗНАЕТ НЕ ПОНЯЛ". Это "ФИГ ЗНАЕТ НЕ ПОНЯЛ" подозрительно похоже на смешанное состояние. Так что смешанные состояния, возможно, каждый из нас наблюдает ежедневно. В эксперименте с глазом мы провели "измерение" последовательно используя три "измерителя": фотоумножитель, глаз и мозг. Каждый из которых не привел к однозначному "измерению". Настроим фотоумножитель на усиление до 200-300 фотонов. В этом случае система глаз-мозг определяет вспышку практически всегда. На этом уровне усиления сигнала мы то есть наш мозг фиксирует "классические события". События которые как мы считаем сбылись.
Как показывает опыт любые идеи можно развивать почти до бесконечности. Следующий уровень это пока чистые гипотезы. Здесь в ВиКи хочу выложить их в виде тезисов, без подробных и запутанных рассуждений. Первое законы физики описывают квантовые состояния от начального состояния до конечного. Все начальные состояния нормируются на 1. То есть что они стопроцентно существовали. Приняв что какое-либо начальное состояние вероятным меньше чем 1, никаких законов мы не нарушим. И также связи с вышеописанными свойствами измерителей наблюдаемая картина мира ничем не измениться. Наблюдаемое событие, рождение нашей Вселенной может не является 100% событием. То есть вероятность ее рождения к примеру равна 1/2. Это не противоречит законам физики. Все квантовые вероятности относительны относительно вероятности рождения Вселенной. Дальше простор фантазии безграничен. Второе. Нелокальность вероятности (парадокс ЭПР), относительность (разное время в разных системах отсчета), особенности мозга как квантового "измерителя" может привести к тому что мозг может фиксировать события которые еще не наступили. Феномен провидцев.
P.S. Забыл про сам вопрос. Показал процесс измерения. Он далеко не мгновенный. Соответственно редукция волновой функции не мгновенна. Touol 19:43, 25 февраля 2011 (UTC) Развил идею при измерения. Кому интересно читайте в Парадоксы квантовой физикиОтветить[ответить]
Touol 01:59, 27 февраля 2011 (UTC)Ответить[ответить]
«Квантовое таинство для всех»Править
Предлагается удалить означенный раздел — своим содержанием он повторяет схему обычной проверки, изложенную выше в других разделах; кроме того, если переписать нормальным языком исходные посылки и выводы, снова получится повтор. Безусловно, идея краткого доступного изложения заслуживает внимания, но достаточно, пожалуй, будет обозначить её где-нибудь повыше одним—двумя предложениями и проставить эту же ссылку. 92.101.146.166 17:14, 18 июля 2010 (UTC)Ответить[ответить]
- Я не могу в это поверить. Хотя бы потому что 1) эта схема специально придумана выдающимся преподавателем квантовой теории для того чтобы сделать суть парадокса общедоступной, хотя бы для технически образованных людей. Очевидно что именно благодаря наглядности 2) парадокс был наконец понят мною, а 3) статья опубликована в в en:American Journal of Physics - журнал специализируется на подаче не новых, но исключительно помогающих обучению вещей. 4) Выдающиеся учёные, популяризирующие физику и парадокс (Пенроуз в «Новый ум короля») предлагают рассмотреть именно схему Мермина, а не ЭПР-Белла-Бома. То есть её доходчивость общепризнана. 4) Наконец, схема Мермина не может быть «повторением» просто потому что рассматривает проблему эмуляции вероятностей на привычном макро-уровне, лишь указывая на возможность достижения 1/2 квантовыми эффектами, тогда как «другие разделы» - наоборот не выходят за рамки квантов. А теперь какой-то умник в википедии открывает нам всем глаза своей оценкой: «Повтор на ненормальном языке». Каково? --javalenok 16:18, 30 сентября 2010 (UTC)Ответить[ответить]
- Я источник не читал, но раздел написан непонятно. Если излучатель испускает одинаковые частицы, откуда у них разный тип и что это за тип? Почему переключатель трёхзначный? Что означает ответ "010", речь вроде шла о двоичном ответе? В какой момент изложения речь заходит о таблице? Что такое "машина 000" и почему она выдёт один и тот же ответ, а "машина 001" может выдавать разные ответы? Как ЭПР может помочь созданию такого устройства? А если его невозможно построить, то что? Наконец, мгновенная передача информации между частицами невозможна (в ЭПР лишь иллюзия передачи информации), это противоречит принципу причинности.—contra_ventum 19:39, 30 сентября 2010 (UTC)Ответить[ответить]
- Присоединяюсь. Абсолютно неясно написанный раздел. Да ещё и в странном стиле. Кто такие "выдающиеся учёные современности", что за "подсказка для физиков"? Его необходимо либо удалить, либо полностью переписать, чтобы было "можно доступно объяснить" его не только всем, но и физикам в том числе :) Source 12:31, 1 октября 2010 (UTC)Ответить[ответить]
- 1. Тип это то что влияет на отклик детектора. Одинаковые = неразличимые = однотипные. На одинаковые частицы детекторы должны реагировать одинаково. При этом частицы могут быть разнотипными. Иначе нет смысла. С чего вы взяли что одинаковые частицы испускаются всегда?
- 2. Переключатель трёхзначный = трёхпозиционный. Почему? А почему в схеме Бома используются магниты? Наверное потому что этого достаточно.
- 3. 010 - это отображение или дискретная функция, заданная в табличной форме. Таблица - это сокращение записи ф(0) = 0, ф(1) = 1, ф(2) = 0. Автомат или машина - это то что реализует функцию. Детектор в нашем случае. Значения функции двоичные, аргумент - трёхзначный. Он остался всего один после того как мы в ф(переключатель, частица) положили частица = const. Так что полная таблица автомата - двумерная, но фиксация любой частицы даст одну из восьми возможных функций. Какая из них реализована детекторами мы не знаем. Это - тот самый скрытый параметр. Она может даже меняться (напр. с каждой принятой частицей). Но в серии из двух измерений - по одному на детекторе - чтобы наступал тот же исход функция должна быть общей для обоих детекторов (частица тоже прислана одинаковая). Вопрос в вероятностях со случайным аргументом. Постоянная функция 000 не зависит от аргумента. Она всегда выдаёт ф(0) = ф(1) = ф(2) = 0 для любого положения переключателя. Поскольку другой эксперементатор имеет тот же нуль, ответы обоих совпадут на 100%. Функция же 010 имеет в области значений как 0 так и 1. Так что в зависимости от аргумента результат может различаться.
- 4. Про иллюзию это вы верно всё придумываете. Я даже когда тут читаю про нелокальность, я понимаю что доказанное ЭПР дальнодействие - это такая же иллюзия как свершившийся факт. Тем более что принцип причинности нарушается не более чем при любом сверхсветовом движении. Там буквально написано: «Явление квантовой нелокальности не противоречит принципу причинности». Или вы считаете иллюзией всё что не позволяет вам общаться быстрее света? Или просто адепт ММИ? Чтоб так твёрдо заявлять иллюзорность сцепки нужно знать наверняка какая из филосовских интерпретаций верна.
- 5. Имя «выдающегося учёного» приведено в том посте, в том самом предложении, которое вызвало ваш резонанс.
- 6. Подсказка для физиков приводися в конце статьи. Автор ссылается на ту же Бомовскую версию ЭПР. Три положения переключателя определяют ориентацию магнитов, 120° относительно друг-друга. Отклики 0/1 - совпадение спина с направлением поля (второй детектор на самом деле дополнительно инвертирир. противопол. спин своей частицы). Вероятности совпадения двух детекторов пропорциональны квадрату косинуса между направлениями магнитов. Дальше физикам предлагается донести до нас квантово-механич. согласование дилеммы между классически несовместимыми свойствами (1) и (2). --javalenok 22:19, 1 октября 2010 (UTC)Ответить[ответить]
- Другими словами, проверке подвергается гипотеза, что "тип" (скрытое состояние) частицы можно описать с помощью функции, которая отображает позицию переключателя (0-1-2) на показание детектора (0/1). Тот факт, что два одинаково настроенных детектора всегда дают совпадающий ответ, создаёт впечатление альтернативы: либо ответ предопределён "типом" частицы (т. е. функция существует), либо же он случаен, но процесс второго измерения "знает" о результате первого. Скажем, если детекторы всегда показывают 1, можно предположить, что то же будет при различных положениях переключателей. Далее показывается, что любая функция привела бы к более высокой корреляции показаний между случайно настроенными детекторами, чем предсказывает квантовая механика в конкретном примере. Мне кажется, это в лучшем случае иллюстрация уже изложенного в статье. Более того, вторая трактовка (о мгновенной передаче информации) также классическая и неверная. Квантовая редукция происходит вне времени, и описание, что "вначале состояние системы было запутанным, а потом стало определённым" на самом деле несколько двусмысленно. Потому что после измерения нет никакой возможности доказать, что состояние системы и прежде не было определённым (так что н-р спины оказались параллельными полю одного из магнитов).—contra_ventum 10:23, 2 октября 2010 (UTC)Ответить[ответить]
- 1. Вообще-то связывать функцию с типом частицы нет нужды. Я писал про функцию детектора. Тип частицы, как аргумент этой функции, скорее будет числом чем функцией. Да, функция может переноситься на детектор вместе с частицей. Главное что на пару частиц генерируется одна функция. Иначе свойство 1 не выполнится. На другую пару того же типа можно и другую функцию повесить.
- 2. Что значит «детекторы всегда показывают 1» не понятно. Если по определению, то тут и предполагать нечего. Если из предидущих опытов, то даже с тем же положением переключателя следующий ответ может показать 0.
- 3. Каким образом из этих сомнительных предположений вы выодите повтор не понятно. Непонятные обвинения в повторе уже были и повторяя их, вместо того чтобы развить, вы сами повторяетесь.
- 4. Нелокальность и зацепленность придумал не я. Светила буквально пишут: «Одно измерение мнгновенно фиксинует спин другой частицы». Вы на них нападаете или мой текст по несознательности чем-то отличается? --javalenok 16:05, 2 октября 2010 (UTC)Ответить[ответить]
- Раздел не годен. Я из обсуждения узнал больше, чем из самого раздела. Вам не кажется, что это ненормально? 91.79.162.12 20:21, 9 ноября 2012 (UTC)Ответить[ответить]
Подписи на картинкеПравить
Переведите, пож-та, кто-нибудь подписи на картинке Файл:Stern-Gerlach experiment.PNG, я сделаю файл на русском. --Das steinerne Herz 12:09, 5 января 2011 (UTC)Ответить[ответить]
Предсказания "квантовой механики"Править
Вот к тексте говориться, что квантовая механика предсказывает. Но ровно то же предсказывает закон Маллюса вполне себе классической физики. Поляризация Света(формула (190.1)) если рассмотреть, допустим случай, что в первый поляризатор попадает фотон всегда с нужной поляризаций, то если второй поляризатор расположен под углом (a, b), то получим вероятность по закону Маллюса , если учесть, что на самом деле , то получим именно ту формулу, которую надо. Поэтому нужно АИ показывающее, что тут именно вывод из квантовой механики, т.к. читатели Википедии в основном не знают всех её тонкостей, чтобы проверить верность вывода самим. --Рулин 12:12, 2 мая 2011 (UTC)Ответить[ответить]
Какая в оптике вероятность? Там, голубчик, интенсивность. А квантовая физика как раз отождествляет корпускулярные вероятности с волновыми интенсивностями. Откуда кстати Бор узнал что если поворачивать поляризаторы, вероятность получится такая? Из того самого Малюса (по французки две лл не звучит), я полагаю. --javalenok 21:17, 11 июня 2011 (UTC)Ответить[ответить]
- Вот в том, то и дело, что Бор узнал, вероятно, из Малюса (т.к. вероятность и интесивность будут пропорциональны). А в парадоксе говориться, именно о квантовом эффекте. Т.е. надо АИ, что классика, которую можно вывести из детерменированных моделей (Малюс) предсказывают одно, а КМ - другое. И вообще надо поподробнее об этом написать, т.к. отличие КМ(в данной области) от классики очень интересный и нетривиальный факт, который лучше поясняет суть как самого парадокса, так и самой КМ.--Рулин 12:53, 12 июня 2011 (UTC)Ответить[ответить]
Теорема Белла и ее экспериментальные проверкиПравить
забыли сказать, что такое а-штрих штрих и b-штрих т.е. вроде a и b - направления поляризаторов а а-штрих и b-штрих какие-то другие направления? какие? предполагается, что это должно быть интуитивно понятно среднестатистическому пользователю Интернет? 109.108.238.217 16:21, 28 октября 2012 (UTC)Ответить[ответить]
- Там надо всё переписывать. Никак не соберусь. --Melirius 17:07, 28 октября 2012 (UTC)Ответить[ответить]
экспериментальные проверка 2018 г. - [4] (на квантовой системе, состоящей из 600 атомов рубидия)
Порядок причинно-следственной связи и привилегированность ИСОПравить
В эксперименте ЭПР после измерения импульса у первой частицы вторая частица также переходит в состояние с определённым импульсом.
Одновременность относительна и зависит от выбора системы координат, все инерциальные системы отсчёта (ИСО) равноправны. Если в одной ИСО сначала измеряется частицы А, а потом Б, то (при условие, что свет не успевает пройти между точками измерения) можно подобрать другую ИСО, в которой будет другой порядок измерений. Поэтому любые утверждения про то что за измерением одной частицы следует переход из неопределённого в определённое у другой частицы должен сопровождаться пояснениями выбора ИСО и причин её привилегированности над другими ИСО. Voproshatel (обс.) 08:18, 5 марта 2021 (UTC)Ответить[ответить]
- ↑ C поправкой на изменение масс при распаде — суммарная масса частиц A и B может отличаться от массы частицы C.