Обсуждение:Алгебраический порядок точности численного метода
Проект «Математика» (уровень IV) Эта статья тематически связана с вики-проектом «Математика», цель которого — создание и улучшение статей по темам, связанным с математикой. Вы можете её отредактировать, а также присоединиться к проекту, принять участие в его обсуждении и поработать над требуемыми статьями. Уровень статьи по шкале оценок проекта: заготовка |
Изменение порядка точности формулы Симпсона, викификаторПравить
В исходном варианте был неверно указан порядок точности метода Симпсона. Метод Симпсона имет 4 порядок точности и 3 порядок погрешности(что верно указано в Формула_Симпсона) Литература: 1.Калиткин Н. Н., Численные методы, М., Наука, 1978; 2.Костомаров Д. П., Фаворский А. П. «Вводные лекции по численным методам»
ParaleX 07:46, 11 января 2008 (UTC)Ответить[ответить]
В тексте присутствуют явные ошибки:
Очевидно, что метод левых (или правых) прямоугольников имеет порядок точности 0, метод трапеций — 1, [...] Менее очевидно, но легко показывается, что порядок точности метода трапеций — 2.
Метод трапеций имеет порядок точности 1. 79.173.80.244 20:51, 30 октября 2008 (UTC)QnikstОтветить[ответить]