Модель ударного формирования Луны
Модель ударного формирования Луны (употребляется также термин «Модель мегаимпакта»[1][2], «Гигантское столкновение» (от англ. Giant impact) и т. д.) — распространённая гипотеза формирования Луны. Согласно этой модели, Луна возникла в результате столкновения молодой Земли и объекта, по размерам сходного с Марсом[3]. Этот гипотетический объект иногда называют Тейя в честь одной из сестёр-титанид, матери Гелиоса, Эос и Селены (луны).
В пользу этой гипотезы свидетельствуют бедность Луны летучими элементами, маленький размер её ядра из сернистого железа, соображения, связанные с моментом импульса системы Земля — Луна[3], образцы лунного грунта, указывающие на то, что поверхность Луны когда-то была расплавленной, а также свидетельства подобных столкновений в других звездных системах.
Однако осталось несколько вопросов, связанных с этой гипотезой, которые так и не получили объяснения. К их числу можно отнести: отсутствие в лунных образцах ожидаемого процентного содержания летучих элементов, окисей железа или сидерофильных элементов, а также отсутствие доказательств того, что Земля когда-то имела океаны магмы, подразумеваемые этой гипотезой.
Данные, полученные в рамках программы «Аполлон», согласно которым соотношение изотопов титана в лунных образцах совпадает с земным, требуют пересмотра существующих моделей формирования Луны с учётом изотопной однородности. На данный момент существует несколько модификаций теории столкновения, которые позволяют объяснить эту однородность. В частности, Тейя могла быть массивнее, чем считалось до сих пор, или Луна могла остывать дольше[4].
Впервые теорию гигантского столкновения выдвинули Уильям К. Хартманн (англ.) и Дональд Р. Дэвис (англ.) в 1975 году в статье[5], напечатанной в журнале «Icarus».
Сценарий столкновенияПравить
Вскоре после своего формирования Земля столкнулась с протопланетой Тейя. Удар пришёлся не по центру, а под углом (почти по касательной). В результате ядра планет слились, а фрагменты их силикатных мантий были выброшены на околоземную орбиту[7]. Из этих обломков собралась прото-Луна и начала обращаться по орбите с радиусом около 60 000 км.
Земля в результате удара получила резкий прирост скорости вращения (один оборот за 5 часов) и заметный наклон оси вращения[источник не указан 691 день]. На ней должен был образоваться большой океан магмы[7]. Несколько процентов массы Земли были выброшены за пределы системы Земля — Луна[8].
Свидетельствуют о таком столкновении собранные экипажами космических аппаратов «Аполлон» образцы лунных пород, которые по составу изотопов кислорода почти идентичны веществу земной мантии[источник не указан 4327 дней]. При химическом исследовании этих образцов не обнаружено ни летучих соединений, ни лёгких элементов; предполагается, что они были «выпарены» при чрезвычайно сильном нагреве, сопутствовавшем образованию этих пород. Сейсмометрией на Луне были измерены размеры её железо-никелевого ядра, которое оказалось меньше, чем предполагается другими гипотезами образования Луны (например, гипотезой одновременного формирования Луны и Земли). В то же время, такой малый размер ядра хорошо вписывается в теорию столкновения, в которой считается, что Луна сформировалась в основном из выброшенного при ударе более легкого вещества мантии Земли и столкнувшегося с нею тела, в то время как тяжёлое ядро этого тела погрузилось и слилось с ядром Земли.
Помимо самого факта существования Луны, теория объясняет и дефицит в земной коре фельзических («светлых») и промежуточных пород, которых недостаточно для полного покрытия поверхности Земли. В результате мы имеем материки, состоящие из относительно лёгких фельзических пород, и океанские бассейны, состоящие из более тёмных и тяжёлых металлосодержащих пород. Такая разница в составе пород, при наличии воды позволяет функционировать системе тектонического движения литосферных плит, образующих земную кору.
Также предполагается, что наклон земной оси и само вращение Земли — результат именно этого столкновения.
Датировка столкновенияПравить
По оценке Карстена Мюнкера и др. (2003), удар должен был произойти не менее 4,533 млрд лет назад, когда (по данным датирования методом 182Hf-182W) завершилось выделение земного ядра[7][9], и Луна должна быть младше Солнечной системы лишь на около 30 млн лет[10].
По оценке Уильяма Боттке (англ.) (рус. и других (2015), основанной на изучении метеоритов, интерпретированных как фрагменты астероидов, сталкивавшихся с выбросами от этого удара, столкновение Земли с Тейей и образование Луны произошли около 4,47 млрд лет назад[8].
Согласно результатам Мелани Барбони и других (2017), основанным на уран-свинцовом датировании цирконов из лунных пород, Луна была дифференцированной и в основном затвердевшей уже 4,51 млрд лет назад, и из этого следует, что «гигантское столкновение» и формирование Луны произошли в первые 60 ± 10 млн лет существования Солнечной системы[11].
ТейяПравить
По мнению некоторых[кого?], столкновение тела марсовых размеров с Землёй под таким углом, чтобы не разрушить планету, в сочетании с возникшим «удачным» углом наклона оси Земли (который обеспечивает смену времени года), плюс создание условий для мощной литосферной тектоники (которая обеспечивает воспроизводство «углеродного цикла»), — всё это может являться доводом в пользу малой вероятности возникновения жизни вообще, и, соответственно, крайне малой вероятности существования жизни в ближайших областях Вселенной. Эта гипотеза получила название «гипотеза уникальной Земли».
Однако в вышедшей в 2004 году статье Эдвард Белбруно и Ричард Готт предположили, что столкнувшаяся с Землёй гипотетическая протопланета Тейя могла сформироваться в одной из точек Лагранжа системы Земля-Солнце — L4 или L5, а затем перейти на беспорядочную орбиту, например в результате гравитационных возмущений со стороны других планет, и ударить Землю на более-менее низкой скорости[12].
Такой механизм существенно повышает вероятность встречи небесного тела с Землёй при требуемых параметрах столкновения.
Моделирование, проведённое в 2005 году доктором Робином Кэнапом, показало, что спутник Плутона Харон мог также образоваться около 4,5 миллиардов лет назад от столкновения Плутона с другим телом из пояса Койпера, диаметром от 1600 до 2000 км, которое ударило планету на скорости 1 км/с. Кэнап предполагает, что такой процесс формирования спутников планет мог быть обычным делом в молодой Солнечной системе. Такие планеты на нестабильных орбитах пропадают очень быстро после возникновения планетной системы, и вращение нынешних планет может объясняться этим механизмом.
В таком случае «гипотеза уникальной Земли» сводится лишь к нужному положению планеты в нашей звёздной системе, большому количеству жидкой воды на поверхности и тяжёлому спутнику на низкой орбите, стабилизирующему ось Земли, создающему гигантские приливы и перемешивающему содержимое океана в течение миллиарда лет[источник не указан 3792 дня].
ПримечанияПравить
- ↑ Витязев А. В., Печерникова Г. В., Сафронов В. С. Планеты земной группы. — Наука. — М., 1990. — С. 200—201. — ISBN 5-02-014070-8.
- ↑ Левин А. Прекрасная Селена (неопр.). Дата обращения: 4 июля 2011. Архивировано 25 сентября 2015 года.
- ↑ 1 2 Herwartz D., Pack A., Friedrichs B., Bischoff A. Identification of the giant impactor Theia in lunar rocks // Science. — 2014. — Vol. 344, № 6188. — P. 1146—1150. — doi:10.1126/science.1251117. — Bibcode: 2014Sci...344.1146H. — PMID 24904162.
- ↑ Гипотезу ударного формирования Луны поставили под сомнение (неопр.). Дата обращения: 23 июня 2020. Архивировано 12 апреля 2021 года.
- ↑ Hartmann W. K., Davis D. R. (1975). “Satellite-sized planetesimals and lunar origin”. Icarus. 24 (4): 504—514. Bibcode:1975Icar...24..504H. DOI:10.1016/0019-1035(75)90070-6.
- ↑ Ross, M. N. Evolution of the lunar orbit with temperature‐ and frequency‐dependent dissipation : [англ.] / M. N. Ross, G. Schubert // Journal of Geophysical Research. — 1989. — Vol. 94, no. B7. — P. 9533–9544. — doi:10.1029/JB094iB07p09533.
- ↑ 1 2 3 Münker C., Pfänder J. A., Weyer S. et al. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics // Science. — 2003. — Vol. 301, № 5629. — P. 84—87. — doi:10.1126/science.1084662. — Bibcode: 2003Sci...301...84M. — PMID 12843390.
- ↑ 1 2 Bottke W. F., Vokrouhlicky D., Marchi S. et al. Dating the Moon-forming impact event with asteroidal meteorites // Science. — 2015. — Vol. 348, № 6232. — P. 321—323. — doi:10.1126/science.aaa0602. — Bibcode: 2015Sci...348..321B. — PMID 25883354.
- ↑ Münker C., Pfänder J. A., Büchl A., Weyer S., Mezger K. Formation of Planetary Cores and timing of Moon separation: constraints from high precision Nb/Ta measurements in meteorites and terrestrial samples // EGS - AGU - EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6 - 11 April 2003, abstract id.12002. — 2003. — Bibcode: 2003EAEJA....12002M.
- ↑ Kleine T., Münker C., Mezger K., Palme H. Rapid accretion and early core formation on asteroids and theterrestrial planets from Hf–W chronometry // Nature. — 2002. — Vol. 418, № 6901. — P. 952—955. — doi:10.1038/nature00982. — Bibcode: 2002Natur.418..952K. — PMID 12198541.
- ↑ Barboni M., Boehnke P., Keller B. et al. Early formation of the Moon 4.51 billion years ago // Science Advances. — 2017. — Vol. 3, № 1. — doi:10.1126/sciadv.1602365. — Bibcode: 2017SciA....3E2365B.
- ↑ [1]Архивная копия от 9 июня 2020 на Wayback Machine [astro-ph/0405372] Where Did The Moon Come From?
ЛитератураПравить
- Dana Mackenzie, «The Big Splat, or How Our Moon Came to Be», 2003, John Wiley & Sons, ISBN 0-471-15057-6.
- D.V.Voronin «Generation of the Moon and Some Other Celestial Bodies due to Explosion in Planet Interiors» INTERNATIONAL JOURNAL OF GEOLOGY Issue 2, Vol. 1, 2007
- Алексей Левин «Прекрасная Селена» «Популярная механика» № 5, 2008
СсылкиПравить
- Planetary Science Institute (англ.) — страница по теории гигантского столкновения.
- Southwest Research Institute (англ.)
- Computer modelling of the moon’s creation (англ.)
- Southwest Research Institute (англ.) — сообщение о теории происхождения Харона в результате столкновения.