Многомерное время в физике
Специальная теория относительности (СТО) описывает пространство-время в виде псевдориманова многообразия с одним отрицательным собственным значением метрического тензора, которое соответствует «временноподобному» направлению. Метрика с несколькими отрицательными собственными значениями будет соответственно подразумевать наличие нескольких временных направлений, то есть время будет многомерным, но в настоящее время нет консенсуса насчёт связи этих дополнительных «времён» с временем в обычном понимании.
Гипотезы многомерного времени выдвигались в физике двояко: как возможное теоретическое описание реальности или как любопытная возможность, вероятно, не имеющая отношения к известной природе. Например, Ицхак Барс опубликовал работу «Физика двухмерного времени»[1], основанную на симметрии SO(10, 2) расширенной структуры суперсимметрии М-теории, являющийся самой современной и систематизированной разновидностью данной теории (см. также F-теория (англ.) (рус.).
Если специальная теория относительности может быть обобщена на случай k-мерного времени и n-мерного пространства , тогда (k + n)-размерный интервал, будучи инвариантным, даёт выражение . Сигнатура метрики тогда будет выглядеть следующим образом:
- — временно-подобное правило знаков (англ.) (рус.,
или
- — пространственно-подобное правило знаков (англ.) (рус..
Преобразования между двумя инерциальными системами отсчёта K и K′, которые находятся в стандартной конфигурации (например, преобразование без перевода и/или вращения оси пространства в гиперплоскости пространства и/или поворотов оси времени в гиперплоскости времени) выглядят следующим образом[2]:
где являются векторами скоростей K′ против K, определяют соответственно в зависимости от размеров времени t1, t2, …, tk; σ = 1, 2, …, k; λ = k + 2, k + 3, …, k + n. Здесь является символом Кронекера. Эти преобразования являются обобщением преобразования Лоренца в фиксированном пространственном направлении (xk+1) в области многомерного времени и многомерного пространства.
Обозначим: , и где σ = 1, 2, …, k; η = k + 1, k + 2, …, k + n. Сложение скоростей затем даст
где σ = 1, 2, …, k; λ = k + 2, k + 3, …, k + n.
Для простоты рассмотрим только одну пространственную размерность x3 и две временные размерности x1 и x2 (то есть, x1 = ct1, x2 = ct2, x3 = x). Предположим, что в точке O, имеющей координаты x1 = 0, x2 = 0, x3 = 0, имело место событие E. Предположим далее, что с момента события E прошёл интервал времени . Причинно-следственная область, связанная с событием E, включает в себя боковую поверхность прямого кругового конуса {(x1)2 + (x2)2 − (x3)2 = 0}, боковую поверхность прямого кругового цилиндра {(x1)2 + (x2)2 = c2ΔT2} и внутреннюю область, ограниченную этими поверхностями, то есть причинно-следственная область включает в себя все точки (x1, x2, x3), для которых условия
- или
- или
являются выполненными[2].
Тем не менее, сигнатуры (1, 3) и (3, 1) физически эквивалентны, так как положительная длина вектора в пространстве Минковского для временноподобных интервалов — это условность, зависящая от договорённости о знаке метрического тензора[3]. Так, некоторые физики как правило используют метрику с сигнатурой (+−−−), что приводит к положительной «длине» Минковского для времениподобных интервалов и энергии, в то время как пространственное расстояние будет иметь отрицательную «длину» Минковского. Релятивисты, однако, как правило придерживаются противоположной конвенции (−+++), что даёт для пространственного расстояния положительную «длину» Минковского[источник не указан 3005 дней].
Все вселенные многомерного времени можно рассматривать в качестве фридмонов[4].
Связь с антропным принципомПравить
В качестве доказательства трёхмерности пространства (если не считать возможные измерения неподтвержденной теории струн) могут приводиться физические последствия предположения о том, что количество измерений отличается от трёх пространственных плюс одного временного. Этот аргумент выполнен в духе антропного принципа, и возможно, это первый случай его использования, пусть и до того, как концепция данного принципа была полностью сформулирована.
Неявное представление о том, что размерность существующей Вселенной является особенной, впервые высказал Лейбниц, который в «Рассуждении о метафизике» предположил, что «мир соответствует такой модели, которая является самой простой в гипотезе и самой богатой в явлениях»[5].
Макс Тегмарк рассматривает гипотезы миров с размерностью времени T > 1 с точки зрения антропного принципа и приходит к выводу о невозможности существования разумной жизни в такой модели мира. В общем случае неизвестно функционирование физических законов в мире с многомерным временем. Если Т отлично от 1, поведение физических систем не может быть выведено из знания соответствующих дифференциальных уравнений в частных производных — задача Коши для волнового уравнения становится плохо определённой. Иными словами, в мире с многомерным временем невозможно точно рассчитать поведение физических систем в будущем, а любой расчёт физических законов будет иметь несколько решений — будущее такой вселенной невозможно спрогнозировать. Разумная жизнь, способная использовать технологии, в подобной вселенной не могла бы возникнуть. Единственный вариант однозначного решения для физических уравнений в мире с многомерным временем — это движение наблюдателя со скоростью света, когда время для него вообще не существует[6].
Более того, Тегмарк утверждает, что если T > 1, протоны и электроны были бы неустойчивы и могли бы распадаться на более массивные частицы. (Это не проблема, если частицы имеют достаточно низкую температуру.) При T > 1 субатомные частицы, распадающиеся в течение определённого периода, вели бы себя непредсказуемо, геодезическая линия не обязательно была бы максимальной для времени. Случай мира с размерностью пространства N = 1 и времени T = 3 обладает интересным свойством: скорость света является нижней границей скорости материальных тел, а вся материя состоит из тахионов[6].
Только мир с трёхмерным пространством даёт достаточную стабильность и сложность, так как в мире с числом измерений пространства меньше 3 маловероятна гравитация и возникают топологические проблемы, а в мире с числом измерений пространства больше 3 невозможно существование стабильных орбит (для гравитационного и электромагнитного полей либо иных дальнодействующих взаимодействий). Поэтому миры с мерностью времени отличной от 1 имеют недостаток прогнозируемости, а миры с развёрнутой мерностью пространства больше 3 — недостаток стабильности. Таким образом, соблюдение антропного принципа исключает любые варианты мира помимо N = 3 и Т = 1 (или N = 1 и Т = 3 в других концепциях)[6].
Связь с длиной Планка и скоростью светаПравить
Движение пробной частицы может быть описано координатой:
которая является каноническим (1,3) вектором пространства-времени с расширенную на дополнительную временноподобную координату . тогда второй параметр времени, описывает размер второго временного измерения и является характеристической скоростью, таким образом, эквивалент . описывает форму второго временного измерения и параметр нормализации такой, что безразмерно. Разбивая с
и используя метрику , тогда Лагранжева механика становится
Применение уравнения Эйлера — Лагранжа дает
Как следствие этой модели было высказано предположение, что скорость света не была постоянной в ранней Вселенной[7].
ПримечанияПравить
- ↑ Bars, Itzhak Two-Time Physics (неопр.). Дата обращения: 8 декабря 2012. Архивировано 5 февраля 2013 года.
- ↑ 1 2 Velev, Milen. Relativistic mechanics in multiple time dimensions (англ.) // Physics Essays (англ.) (рус. : journal. — 2012. — Vol. 25, no. 3. — P. 403—438. — doi:10.4006/0836-1398-25.3.403. — Bibcode: 2012PhyEs..25..403V.
- ↑ Синг Дж. Л. Общая теория относительности. — М.: ИЛ, 1963. — С. 349.
- ↑ Геометрия черных и белых дыр (Часть 1) Архивная копия от 6 февраля 2016 на Wayback Machine.
- ↑ Leibniz, Gottfried. Discourse on Metaphysics // Die philosophischen schriften von Gottfried Wilhelm Leibniz, Volume 4 (нем.). — Weidmann, 1880. — S. 427—463.
- ↑ 1 2 3 Tegmark, Max. On the dimensionality of spacetime (англ.) // Classical and Quantum Gravity : journal. — 1997. — April (vol. 14, no. 4). — P. L69—L75. — doi:10.1088/0264-9381/14/4/002. — Bibcode: 1997CQGra..14L..69T. — arXiv:gr-qc/9702052.
- ↑ A. Albrecht, J. Magueijo. A Time Varying Speed of Light as a Solution to Cosmological Puzzles. Phys. Rev. D vol. 59 043516 (1999)