Критерий Дарбина — Уотсона
Критерий Дарбина—Уотсона (или DW-критерий) — статистический критерий, используемый для тестирования автокорреляции первого порядка элементов исследуемой последовательности. Наиболее часто применяется при анализе временных рядов и остатков регрессионных моделей.
Статистика Дарбина—УотсонаПравить
Критерий назван в честь Джеймса Дарбинаruen и Джеффри Уотсонаruen. Критерий Дарбина—Уотсона рассчитывается по следующей формуле[1][2]:
где — коэффициент автокорреляции первого порядка.
Подразумевается, что в модели регрессии ошибки специфицированы как , где распределено, как белый шум. , , а , где .
В случае отсутствия автокорреляции ; при положительной автокорреляции стремится к нулю, а при отрицательной — к 4:
На практике применение критерия Дарбина—Уотсона основано на сравнении величины с теоретическими значениями и для заданного числа наблюдений , числа независимых переменных модели и уровня значимости .
- Если , то гипотеза о независимости случайных отклонений отвергается (следовательно, присутствует положительная автокорреляция);
- Если , то гипотеза не отвергается;
- Если , то нет достаточных оснований для принятия решений.
Когда расчётное значение превышает 2, то с и сравнивается не сам коэффициент , а выражение [2].
Также с помощью данного критерия выявляют наличие коинтеграции между двумя временными рядами. В этом случае проверяют гипотезу о том, что фактическое значение критерия равно нулю. С помощью метода Монте-Карло были получены критические значения для заданных уровней значимости. В случае, если фактическое значение критерия Дарбина—Уотсона превышает критическое, то нулевую гипотезу об отсутствии коинтеграции отвергают[2].
НедостаткиПравить
- Неприменим к моделям авторегрессии, а также к моделям с гетероскедастичностью условной дисперсии и GARCH-моделям.
- Не способен выявлять автокорреляцию второго и более высоких порядков.
- Даёт достоверные результаты только для больших выборок[2].
- Не подходит для моделей без свободного члена (для них статистика, аналогичная , была рассчитана Farebrother).
- Дисперсия коэффициентов будет расти, если имеет распределение, отличающееся от нормального.
h-критерий ДарбинаПравить
Критерий Дарбина—Уотсона неприменим для моделей авторегрессии, так как он для подобного рода моделей может принимать значение, близкое к двум, даже при наличии автокорелляции в остатках. Для этих целей используется -критерий Дарбина.
-статистика Дарбина применима тогда, когда среди объясняющих регрессоров есть . На первом шаге методом МНК строится регрессия. Затем критерий Дарбина применяется для выявления автокорреляции остатков в модели с распределёнными лагами[2]:
где
- — число наблюдений в модели;
- — оценка дисперсии коэффициента при лаговой результативной переменной .
При увеличении объёма выборки распределение -статистики стремится к нормальному с нулевым математическим ожиданием и дисперсией, равной 1. Поэтому гипотеза об отсутствии автокорреляции остатков отвергается, если фактическое значение -статистики оказывается больше, чем критическое значение нормального распределения[3].
Ограничение данной статистики следует из её формулировки: в формуле присутствует квадратный корень, следовательно, если дисперсия коэффициента при велика, то процедура невыполнима.
Критерий Дарбина — Уотсона для панельных данныхПравить
Для панельных данных используется немного видоизменённый критерий Дарбина—Уотсона:
В отличие от критерия Дарбина—Уотсона для временных рядов, в этом случае область неопределенности является очень узкой, в особенности для панелей с большим количеством индивидуумов[4].
См. такжеПравить
ПримечанияПравить
- ↑ Суслов В. И., Ибрагимов Н. М., Талышева Л. П., Цыплаков А. А. Эконометрия. — Новосибирск: СО РАН, 2005. — 744 с. — ISBN 5-7692-0755-8.
- ↑ 1 2 3 4 5 Эконометрика. Учебник / Под ред. Елисеевой И. И.. — 2-е изд. — М.: Финансы и статистика, 2006. — 576 с. — ISBN 5-279-02786-3..
- ↑ Кремер Н. Ш., Путко Б. А. Эконометрика. — М.: Юнити-Дана, 2003—2004. — 311 с. — ISBN 8-86225-458-7..
- ↑ Ратникова Т. А. Введение в эконометрический анализ панельных данных (рус.) // Экономический журнал ВШЭ. — 2006. — № 3. — С. 492—519. Архивировано 5 января 2015 года..
ЛитератураПравить
- Anatolyev S. Durbin–Watson statistic and random individual effects // Econometric Theory (Problems and Solutions). — 2002-2003.