Ковалентный радиус
Ковале́нтный ра́диус в химии — это половина расстояния между ядрами атомов данного элемента, образующими ковалентную связь. За величину ковалентного радиуса принимается половина кратчайшего межатомного расстояния в кристалле простого вещества. Другими словами, если обозначить через X атомы элемента, образующего кристалл с ковалентной связью, то для галогенов ковалентный радиус равен половине длины связи в молекуле X2, для серы и селена — половине длины связи в молекуле X8, а для углерода и кремния он принимается равным половине кратчайшего межатомного расстояния в кристаллах алмаза и кремния.
Ковалентный радиус характеризует распределение электронной плотности вблизи ядра и близок к другим характеристикам распределения электронной плотности (радиус Ван-дер-Ваальса, Боровский радиус для атома водорода и т. п.)
Сумма ковалентных радиусов должна быть равна длине ковалентной связи между двумя атомами, R (AB) = R (A) + R (B).
Таблица ковалентных радиусовПравить
Значения в таблице основаны на статистическом анализе более чем 228 тысяч экспериментально измеренных длин связей из Кембриджской структурной базы данных (Cambridge Structural Database).[1]. Числа в скобках — оцененные стандартные отклонения в единицах последней значащей цифры. Эта подгонка опирается на предварительно заданные значения ковалентных радиусов углерода, азота и кислорода.
H | He | |||||||||||||||||
1 | 2 | |||||||||||||||||
31(5) | 28 | |||||||||||||||||
Li | Be | B | C | N | O | F | Ne | |||||||||||
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||||||||||
128(7) | 96(3) | 84(3) | sp3 76(1) sp2 73(2) sp 69(1) |
71(1) | 66(2) | 57(3) | 58 | |||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |||||||||||
166(9) | 141(7) | 121(4) | 111(2) | 107(3) | 105(3) | 102(4) | 106(10) | |||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |
19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | |
203(12) | 176(10) | 170(7) | 160(8) | 153(8) | 139(5) | l.s. 139(5) h.s. 161(8) |
l.s. 132(3) h.s. 152(6) |
l.s. 126(3) h.s. 150(7) |
124(4) | 132(4) | 122(4) | 122(3) | 120(4) | 119(4) | 120(4) | 120(3) | 116(4) | |
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |
37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | |
220(9) | 195(10) | 190(7) | 175(7) | 164(6) | 154(5) | 147(7) | 146(7) | 142(7) | 139(6) | 145(5) | 144(9) | 142(5) | 139(4) | 139(5) | 138(4) | 139(3) | 140(9) | |
Cs | Ba | La | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
55 | 56 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | |
244(11) | 215(11) | 187(8) | 175(10) | 170(8) | 162(7) | 151(7) | 144(4) | 141(6) | 136(5) | 136(6) | 132(5) | 145(7) | 146(5) | 148(4) | 140(4) | 150 | 150 | |
Fr | Ra | Ac | ||||||||||||||||
87 | 88 | |||||||||||||||||
260 | 221(2) | |||||||||||||||||
La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | |||||
57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | |||||
207(8) | 204(9) | 203(7) | 201(6) | 199 | 198(8) | 198(6) | 196(6) | 194(5) | 192(7) | 192(7) | 189(6) | 190(10) | 187(8) | |||||
Ac | Th | Pa | U | Np | Pu | Am | Cm | |||||||||||
89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | |||||||||||
215 | 206(6) | 200 | 196(7) | 190(1) | 187(1) | 180(6) | 169(3) |
Другой подход основывается на самосогласованной оптимизации ковалентных радиусов всех элементов для меньшего набора молекул. Это было сделано отдельно для одинарных (r1)[2], двойных (r2)[3] и тройных (r3)[4] связей для всех элементов, кроме сверхтяжёлых. В нижеследующей таблице, полученной на базе этого подхода, использованы и экспериментальные, и расчётные данные. Тот же самосогласованный подход был использован для соответствующих тетраэдрических ковалентных радиусов[5] для 30 элементов в 48 кристаллах с точностью лучше 1 пикометра.
1(IA) | 2(IIA) | 3(IIIB) | 4(IVB) | 5(VB) | 6(VIB) | 7(VIIB) | 8(VIIIB) | 9(VIIIB) | 10(VIIIB) | 11(IB) | 12(IIB) | 13(IIIA) | 14(IVA) | 15(VA) | 16(VIA) | 17(VIIA) | 18(VIIIA) | |
Период | ||||||||||||||||||
1 | 1 H 32 — — |
Зарядовое число Химический элемент |
2 He 46 — — | |||||||||||||||
2 | 3 Li 133 124 — |
4 Be 102 90 85 |
5 B 85 78 73 |
6 C 75 67 60 |
7 N 71 60 54 |
8 O 63 57 53 |
9 F 64 59 53 |
10 Ne 67 96 — | ||||||||||
3 | 11 Na 155 160 — |
12 Mg 139 132 127 |
13 Al 126 113 111 |
14 Si 116 107 102 |
15 P 111 102 94 |
16 S 103 94 95 |
17 Cl 99 95 93 |
18 Ar 96 107 96 | ||||||||||
4 | 19 K 196 193 — |
20 Ca 171 147 133 |
21 Sc 148 116 114 |
22 Ti 136 117 108 |
23 V 134 112 106 |
24 Cr 122 111 103 |
25 Mn 119 105 103 |
26 Fe 116 109 102 |
27 Co 111 103 96 |
28 Ni 110 101 101 |
29 Cu 112 115 120 |
30 Zn 118 120 — |
31 Ga 124 117 121 |
32 Ge 121 117 121 |
33 As 121 114 106 |
34 Se 116 107 107 |
35 Br 114 109 110 |
36 Kr 117 121 108 |
5 | 37 Rb 210 202 — |
38 Sr 185 157 139 |
39 Y 163 130 124 |
40 Zr 154 127 121 |
41 Nb 147 125 116 |
42 Mo 138 121 113 |
43 Tc 128 120 110 |
44 Ru 125 114 103 |
45 Rh 125 110 106 |
46 Pd 120 117 112 |
47 Ag 128 139 137 |
48 Cd 136 144 — |
49 In 142 136 146 |
50 Sn 140 130 132 |
51 Sb 140 133 127 |
52 Te 136 128 121 |
53 I 133 129 125 |
54 Xe 131 135 122 |
6 | 55 Cs 232 209 — |
56 Ba 196 161 149 |
* |
72 Hf 152 128 121 |
73 Ta 146 126 119 |
74 W 137 120 115 |
75 Re 131 119 110 |
76 Os 129 116 109 |
77 Ir 122 115 107 |
78 Pt 123 112 110 |
79 Au 124 121 123 |
80 Hg 133 142 — |
81 Tl 144 142 150 |
82 Pb 144 135 137 |
83 Bi 151 141 135 |
84 Po 145 135 129 |
85 At 147 138 138 |
86 Rn 142 145 133 |
7 | 87 Fr 223 218 — |
88 Ra 201 173 159 |
** |
104 Rf 157 140 131 |
105 Db 149 136 126 |
106 Sg 143 128 121 |
107 Bh 141 128 119 |
108 Hs 134 125 118 |
109 Mt 129 125 113 |
110 Ds 128 116 112 |
111 Rg 121 116 118 |
112 Cn 122 137 130 |
113 Uut 136 — — |
114 Fl 143 — — |
115 Uup 162 — — |
116 Lv 175 — — |
117 Uus 165 — — |
118 Uuo 157 — — |
* Лантаноиды | 57 La 180 139 139 |
58 Ce 163 137 131 |
59 Pr 176 138 128 |
60 Nd 174 137 |
61 Pm 173 135 |
62 Sm 172 134 |
63 Eu 168 134 |
64 Gd 169 135 132 |
65 Tb 168 135 |
66 Dy 167 133 |
67 Ho 166 133 |
68 Er 165 133 |
69 Tm 164 131 |
70 Yb 170 129 |
71 Lu 162 131 131 | |||
** Актиноиды | 89 Ac 186 153 140 |
90 Th 175 143 136 |
91 Pa 169 138 129 |
92 U 170 134 118 |
93 Np 171 136 116 |
94 Pu 172 135 |
95 Am 166 135 |
96 Cm 166 136 |
97 Bk 168 139 |
98 Cf 168 140 |
99 Es 165 140 |
100 Fm 167 |
101 Md 173 139 |
102 No 176 159 |
103 Lr 161 141 |
См. такжеПравить
СсылкиПравить
- Большая советская энциклопедия
- Статья английской Википедии (Covalent radius)
ЛитератураПравить
- Рабинович В.А., Хавин З.Я. Краткий химический справочник. Изд. 2-е, испр. и доп. — Л.: Химия, 1978. — 392 с.
ПримечанияПравить
- ↑ Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán and Santiago Alvarez. Covalent radii revisited (англ.) // Dalton Trans. (англ.) (рус. : journal. — 2008. — No. 21. — P. 2832—2838. — doi:10.1039/b801115j.
- ↑ 1 2 P. Pyykkö, M. Atsumi. Molecular Single-Bond Covalent Radii for Elements 1-118 (англ.) // Chemistry: A European Journal (англ.) (рус. : journal. — 2009. — Vol. 15. — P. 186—197. — doi:10.1002/chem.200800987.
- ↑ 1 2 P. Pyykkö, M. Atsumi. Molecular Double-Bond Covalent Radii for Elements Li–E112 (каталан.) // Chemistry: A European Journal (англ.) (рус.. — 2009. — Vol. 15, num. 46. — P. 12770—12779. — doi:10.1002/chem.200901472..
- ↑ 1 2 P. Pyykkö, S. Riedel, M. Patzschke. Triple-Bond Covalent Radii (англ.) // Chemistry: A European Journal (англ.) (рус. : journal. — 2005. — Vol. 11, no. 12. — P. 3511—3520. — doi:10.1002/chem.200401299. — PMID 15832398.
- ↑ P. Pyykkö,. Refitted tetrahedral covalent radii for solids (англ.) // Physical Review B : journal. — 2012. — Vol. 85, no. 2. — P. 024115, 7 p. — doi:10.1103/PhysRevB.85.024115.