Это не официальный сайт wikipedia.org 01.01.2023

Задача одной плитки — Википедия

Задача одной плитки

Задача одной плитки (англ. einstein problem) — геометрическая проблема, ставящая вопрос о существовании одной протоплитки[en], которая образует непериодическое множество плиток[en], то есть о существовании фигуры, копиями которой можно замостить пространство, но только непериодичным способом. В источниках на английском языке такие фигуры называют «einsteins» — игра слов, нем. ein stein означает «один камень», и так же записывается фамилия физика Альберта Эйнштейна. В зависимости от конкретного определения непериодичности, а именно, какие множества можно считать плитками и как их можно соединять, проблему можно считать открытой или решённой. Задачу одной плитки можно рассматривать как естественное продолжение второй части восемнадцатой проблемы Гильберта[en], в которой задаётся вопрос о многограннике, копиями которого можно заполнить трёхмерное евклидово пространство, причём никакое заполнение пространства копиями этого многогранника не должно быть изоэдральным[1]. Такие неизоэдральные тела[en] были найдены Карлом Райнхардом[en] в 1928 году, но эти тела заполняют пространство периодическим образом.

Предложенное решениеПравить

 
Плитка Соколара — Тейлора является предложенным решением задачи одной плитки.

В 1988 году Петер Шмитт обнаружил непериодическую протоплитку для трёхмерного евклидова пространства. Хотя никакое заполнение этим телом не допускает параллельный перенос, некоторые заполнения имеют винтовую симметрию[en]. Операция винтовой симметрии имеет вид композиции параллельного переноса и вращения на угол, несоизмеримый с π, так что никакое число повторений этих операций не приведёт к простому параллельному переносу. Эта конструкция была позднее использована Джоном Конвеем и Людвигом Данцером для построения выпуклой непериодической плитки, плитки Шмитта — Конвея — Данцера. Наличие винтовой симметрии явилось следствием требования непериодичности[2]. Хаим Гудман-Штраусс предложил считать мозаики строго апериодичными, если для них не существует бесконечной циклической группы движений евклидова пространства[en], являющихся симметриями мозаики, и называть строго апериодичными только те наборы плиток, которые приводят к строго апериодичным мозаикам, остальные наборы плиток тогда называются слабо апериодичными [3].

В 1996 году Петра Гуммельт построила десятиугольную плитку с рисунком и показала, что при разрешении двух типов перекрытия пар плиток ими можно замостить плоскость, причём только апериодичным образом [4]. Обычно под мозаикой понимается заполнение без перекрытия, так что плитку Гуммельт нельзя считать апериодической протоплиткой. Апериодическое множество плиток на евклидовой плоскости, которое состоит только из одной плитки — плитки Соколара — Тейлор — было предложено в начале 2010-х годов Джошуа Соколаром и Джоан Тейлор [5]. Эта конструкция вовлекает правила соединения, правила, ограничивающие относительную ориентацию двух плиток, и правила соединения рисунков на плитках, и эти правила применяются к парам несмежных плиток. Можно использовать плитки без рисунков и без правил ориентации, но тогда плитки не будут связными. Построение можно распространить на трёхмерное пространство с использованием связных плиток и без правил соединения, но эти плитки могут быть выложены с периодичностью в одном направлении, так что это лишь слабо непериодическая мозаика. Более того, плитки не односвязны.

Существование строго апериодических множеств, состоящих из одной связной плитки без правил соединения, остаётся нерешённой проблемой.

ПримечанияПравить

  1. Senechal, 1996, pp. 22-24.
  2. Radin, 1995, pp. 3543–3548.
  3. Goodman-Strauss, 2000.
  4. Gummelt, 1996, pp. 1–17.
  5. Socolar, Taylor, 2011, pp. 2207-2231.

СсылкиПравить