Это не официальный сайт wikipedia.org 01.01.2023

Гипотезы Тэйта — Википедия

Гипотезы Тэйта

Гипотезы Тэйта — это три гипотезы, высказанные математиком XIX века Питером Гатри Тэйтом при изучении узлов[en][1]. Гипотезы Тэйта вовлекают концепции из теории узлов, такие как альтернированные узлы, хиральность и число закрученности. Все гипотезы Тэйта доказаны, последней была гипотеза о переворачивании.

ПредпосылкиПравить

 
Сокращённая диаграмма — это такая, в которой удалены все перешейки.

Тэйт пришёл к своим гипотезам в конце XIX века после попыток свести в таблицу[en] все узлы. Как у основателя теории узлов, его работа не обладала строгим математическим обоснованием, и не совсем понятно, распространял ли он свои гипотезы на все узлы, или только на альтернированные. Оказалось, что большинство из них верны только для альтернированных узлов[2]. В гипотезах Тэйта диаграмма узла называется «сокращённой», если все «перешейки» или «тривиальные перекрещивания» удалены.

Число пересечений альтернированных узловПравить

Тэйт предположил, что при некоторых обстоятельствах число пересечений является инвариантом узла, в частности:

Любая сокращённая диаграмма альтернированного зацепления имеет наименьшее возможное число пересечений.

Другими словами, число пересечений сокращённого альтернированного зацепления является инвариантом узла. Эту гипотезу доказали Луис Кауффман, Кунио Мурасуги (村杉 邦男) и Морвен Б. Тистлетвэйт в 1987 году с помощью многочлена Джонса[3][4][5].

Геометрическое доказательство, не использующее многочлены узла, дал в 2017 году Джошуа Гриин[6].

Число закрученности и хиральностьПравить

Вторая гипотеза Тэйта:

Амфихаральное (или ахиральное) альтернированное зацепление имеет нулевое число закрученности.

Эту гипотезу также доказали Кауффман и Тистлетвэйт[3][7].

ПеревёртываниеПравить

Гипотезу Тэйта о перевёртывании можно сформулировать так:

Если даны две сокращённые альтернированные диаграммы D 1   и D 2   ориентированного простого альтернированного зацепления, то диаграмма D 1   может быть преобразована в D 2   путём последовательности некоторого вида операций, называемых перевёртыванием[en][8]

Гипотезу Тэйта о перевёртывании доказали Тистлетвэйт и Уильям Менаско в 1991 году[9]. Из гипотезы Тэйта о перевёртывании вытекает несколько других гипотез Тэйта:

Любые две сокращённые диаграммы одного и того же альтернированного узла имеют одинаковое число закрученности.

Это следует из того, что перевёртывание сохраняет число закрученности. Этот факт доказали ранее Мурасуги и Тистлетвэйт[7][10]. Это также следует из работы Гриина[6]. Для неальтернированных узлов эта гипотеза не верна и пара Перко является контрпримером[2].

Из этого результата следует также следующая гипотеза:

Альтернированные амфихиральные узлы имеют чётное число пересечений[2].

Это следует из того, что зеркальный узел имеет противоположное число закрученности. Эта гипотеза снова верна только для альтернированных узлов — существует неальтернированный амфихиральный узел с числом пересечений 15[11].

См. такжеПравить

ПримечанияПравить

  1. Lickorish, 1997, с. 47.
  2. 1 2 3 Stoimenow, 2008, с. 285–291.
  3. 1 2 Kauffman, 1987, с. 395–407.
  4. Murasugi, 1987, с. 187–194.
  5. Thistlethwaite, 1987, с. 297–309.
  6. 1 2 Greene, 2017, с. 2133–2151.
  7. 1 2 Thistlethwaite, 1988, с. 311–318.
  8. Weisstein, Eric W. Tait's Knot Conjectures (англ.) на сайте Wolfram MathWorld.
  9. Menasco, Thistlethwaite, 1993, с. 113–171.
  10. Murasugi, 1987, с. 317–318.
  11. Weisstein, Eric W. Amphichiral Knot (англ.) на сайте Wolfram MathWorld.

ЛитератураПравить