Внутренняя мембрана митохондрий
Внутренняя мембрана митохондрий — митохондриальная мембрана, разделяющая митохондриальный матрикс и межмембранное пространство[en].
СтруктураПравить
Внутренняя мембрана состоит из множества складок, именуемых кристы, которые значительно увеличивают поверхность мембраны и разбивают внутреннее пространство митохондрии на компартменты. Между собой кристы соединяются особыми перемычками белковой природы, которые помогают поддерживать их форму. Эти же перемычки обеспечивают связь внешний и внутренней мембраны в местах расположения транспортёра внешней мембраны мембраны митохондрии (TOM), который ответственен за транспорт белков из цитоплазмы через внешнюю мембрану.
Внутренняя мембрана разбивает митохондрию на два компартмента: межмембранное пространство, которое постепенно переходит в цитозоль, и митохондриальный матрикс, расположенный в пределах внутренней мембраны.
КристыПравить
Благодаря кристам площадь внутренней мембраны может быть во много раз больше площади внешней. Например, у митохондрий печеночных клеток площадь внутренней мембраны в пять раз превышает площадь внешней. У некоторый клеток с повышенной потребностью в АТФ, например, у клеток мышечной ткани, это соотношение может быть ещё выше. На внутренней стороне кристы усеяны белками, такими как АТФ-аза. Наличие крист оказывает значительно влияние на хемиосмотическую функцию митохондрий[1].
ПеремычкиПравить
Складки внутренней мембраны соединятся между собой специальными белковыми перемычками. Край каждой кристы частично зашит трансмембранными белковыми комплексами, которые соединяясь голова к голове связывают лежащие друг на против друга мембраны, образуя некое подобие мембранного мешка[2]. Делеция белков Mitofilin/Fcj1, которые входят в комплекс MINOS, образующий перемычки между кристами, приводит к снижению потенциала на внутренней мембране и нарушению роста[3] а также к аномальной структуре внутренней мембраны, которая образует концентрические штабеля вместо типичных впячиваний[4].
СоставПравить
Внутренняя мембрана митохондрий имеет самое высокое содержание белков из всех клеточных мембран: белки составляют 80 % от её массы. Для сравнения во внешней мембране митохондрий они составляю только 50 % от её массы[5]. По липидному составу внутренняя мембрана схожа с мембранами бактерий, что хорошо объяснимо в рамках эндосимбиотической гипотезы.
В митохондриях из сердца свиньи, внутренняя мембрана на 37,0 % состоит из фосфатидилэтаноламина, на 26,5 % из фосфатидилхолина, на 25,4 % из кардиолипина и на 4,5 % из фосфатидилинозитола[6] В митохондриях S. cerevisiae фосфатидилхолин составляет 38,4 % внутренней мембраны, фосфатидилэтаноламин 24,0 %, фосфатидилинозитол 16,2 %, кардиолипин 16,1 %, фосфатидилсерин 3,8 % и фосфатидная кислота 1,5 %[7].
ПроницаемостьПравить
Внутренняя мембрана проницаема только для кислорода, углекислого газа и воды[8]. Она в значительной степени менее проницаема для ионов и малых молекул чем внешняя мембрана, благодаря чему эффективно отделяет митохондриальный матрикс от цитоплазмы, что необходимо важно для функционирование митохондрий. Внутренняя мембрана митохондрий является одновременно электрическим изолятором и химическим барьером. Сложные ионные транспортёры обеспечивают специфический транспорт некоторых молекул через этот барьер. Существует несколько антипортов, которые позволяют обмениваться молекулами (в основном анионы) между цитозолем и митохондриальным матриксом[5].
Белки внутренней мембраныПравить
ПримечанияПравить
- ↑ Mannella C. A. Structure and dynamics of the mitochondrial inner membrane cristae. (англ.) // Biochimica et biophysica acta. — 2006. — Vol. 1763, no. 5-6. — P. 542—548. — doi:10.1016/j.bbamcr.2006.04.006. — PMID 16730811. [исправить]
- ↑ Herrmann, J. M. MINOS is plus: a Mitofilin complex for mitochondrial membrane contacts. (англ.) // Developmental cell : journal. — 2011. — 18 October (vol. 21, no. 4). — P. 599—600. — PMID 22014515.
- ↑ von der Malsburg, K; Müller, JM; Bohnert, M; Oeljeklaus, S; Kwiatkowska, P; Becker, T; Loniewska-Lwowska, A; Wiese, S; Rao, S; Milenkovic, D; Hutu, DP; Zerbes, RM; Schulze-Specking, A; Meyer, HE; Martinou, JC; Rospert, S; Rehling, P; Meisinger, C; Veenhuis, M; Warscheid, B; van der Klei, IJ; Pfanner, N; Chacinska, A; van der Laan, M. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. (англ.) // Developmental cell : journal. — 2011. — 18 October (vol. 21, no. 4). — P. 694—707. — PMID 21944719.
- ↑ Rabl, R; Soubannier, V; Scholz, R; Vogel, F; Mendl, N; Vasiljev-Neumeyer, A; Körner, C; Jagasia, R; Keil, T; Baumeister, W; Cyrklaff, M; Neupert, W; Reichert, A. S. Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. (англ.) // The Journal of cell biology (англ.) (рус. : journal. — 2009. — 15 June (vol. 185, no. 6). — P. 1047—1063. — PMID 19528297.
- ↑ 1 2 Krauss, Stefan Mitochondria: Structure and Role in Respiration (неопр.). Nature Publishing Group (2001). Дата обращения: 9 апреля 2014. Архивировано из оригинала 21 октября 2012 года.
- ↑ Comte J., Maïsterrena B., Gautheron D. C. Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria. Comparison with microsomes (англ.) // Biochim. Biophys. Acta (англ.) (рус. : journal. — 1976. — January (vol. 419, no. 2). — P. 271—284. — doi:10.1016/0005-2736(76)90353-9. — PMID 1247555. Архивировано 13 августа 2020 года.
- ↑ Lomize Andrel, Lomize Mikhail, Pogozheva Irina. Membrane Protein Lipid Composition Atlas (неопр.). Orientations of Proteins in Membranes. University of Michigan (2013). Дата обращения: 10 апреля 2014. Архивировано 28 апреля 2021 года.
- ↑ Caprette, David R. Structure of Mitochondria (неопр.). Experimental Biosciences. Rice University (12 декабря 1996). Дата обращения: 9 апреля 2014. Архивировано 23 сентября 2021 года.