Это не официальный сайт wikipedia.org 01.01.2023

MAPK3 — Википедия

MAPK3 («митоген-активируемая белковая киназа 3»; англ. mitogen-activated protein kinase 3; p44MAPK; ERK1) — цитозольная серин/треониновая протеинкиназа, семейства MAPK группы ERK[5], продукт гена MAPK3[6].

MAPK3
Доступные структуры
PDBПоиск ортологов: PDBe RCSB
Идентификаторы
СимволыMAPK3, ERK-1, ERK1, ERT2, HS44KDAP, HUMKER1A, P44ERK1, P44MAPK, PRKM3, p44-ERK1, p44-MAPK, mitogen-activated protein kinase 3
Внешние IDsOMIM: 601795 MGI: 1346859 HomoloGene: 55682 GeneCards: MAPK3
Ортологи
ВидЧеловекМышь
Entrez
Ensembl
UniProt
RefSeq (мРНК)

NM_001040056
NM_001109891
NM_002746

NM_011952

RefSeq (белок)

NP_001035145
NP_001103361
NP_002737

NP_036082

Локус (UCSC)Chr 16: 30.11 – 30.12 MbChr 7: 126.36 – 126.36 Mb
Поиск PubMed[3][4]
Викиданные
Править (человек)Править (мышь)

СтруктураПравить

MAPK3 состоит из 379 аминокислот, молекулярная масса 43,1 кДа. Описано 3 изоформы белка, образующиеся в результате альтернативного сплайсинга.

ФункцияПравить

MAPK3, или ERK1, — фермент семейства MAPK из группы киназ, регулируемых внеклеточными сигналами (ERK). Киназа отвечает на разнообразные внешние сигналы и вовлечёна во множество клеточных процессов, таких как пролиферация, клеточная дифференцировка, регуляция клеточного цикла. Активация киназы требует её фосфорилирования другими киназами, расположенными выше в сигнальном каскаде. После активации MAPK3 транслоцируется в клеточное ядро, где фосфорилирует ядерные мишени. Обнаружено несколько изоформы MAPK3, образующиеся в результате альтернативного сплайсинга[7].

Клиническое значениеПравить

Предполагается, что ген MAPK3 вместе с геном IRAK1 выключается под действием нескольких микроРНК, которые активируются, когда вирус гриппа Alphainfluenzavirus инфицирует лёгкие[8].

Сигнальные путиПравить

Фармакологическое ингибирование ERK1/2 восстанавливает активность GSK3β и синтез белка в моделе туберозного склероза[9].

ВзаимодействияПравить

MAPK3 взаимодействует со следующими белками:

ПримечанияПравить

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000102882 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000063065 - Ensembl, May 2017
  3. Human PubMed Reference:  (неопр.) National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. Mouse PubMed Reference:  (неопр.) National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Thomas, Gareth M.; Huganir, Richard L. (1 March 2004). “MAPK cascade signalling and synaptic plasticity”. Nature Reviews Neuroscience. 5 (3): 173—183. DOI:10.1038/nrn1346. ISSN 1471-003X. PMID 14976517. S2CID 205499891.
  6. García F, Zalba G, Páez G, Encío I, de Miguel C (15 May 1998). “Molecular cloning and characterization of the human p44 mitogen-activated protein kinase gene”. Genomics. 50 (1): 69—78. DOI:10.1006/geno.1998.5315. PMID 9628824.
  7. Entrez Gene: MAPK3 mitogen-activated protein kinase 3  (неопр.).
  8. Buggele WA, Johnson KE, Horvath CM (2012). “Influenza A virus infection of human respiratory cells induces primary microRNA expression”. J. Biol. Chem. 287 (37): 31027—40. DOI:10.1074/jbc.M112.387670. PMC 3438935. PMID 22822053.
  9. Pal R, Bondar VV, Adamski CJ, Rodney GG, Sardiello M (2017). “Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis”. Sci. Rep. 7 (1): 4174. DOI:10.1038/s41598-017-04528-5. PMC 5482840. PMID 28646232.
  10. Todd JL, Tanner KG, Denu JM (May 1999). “Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway”. J. Biol. Chem. 274 (19): 13271—80. DOI:10.1074/jbc.274.19.13271. PMID 10224087.
  11. Muda M, Theodosiou A, Gillieron C, Smith A, Chabert C, Camps M, Boschert U, Rodrigues N, Davies K, Ashworth A, Arkinstall S (April 1998). “The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity”. J. Biol. Chem. 273 (15): 9323—9. DOI:10.1074/jbc.273.15.9323. PMID 9535927.
  12. Kim DW, Cochran BH (February 2000). “Extracellular signal-regulated kinase binds to TFII-I and regulates its activation of the c-fos promoter”. Mol. Cell. Biol. 20 (4): 1140—8. DOI:10.1128/mcb.20.4.1140-1148.2000. PMC 85232. PMID 10648599.
  13. Zhou X, Richon VM, Wang AH, Yang XJ, Rifkind RA, Marks PA (December 2000). “Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras”. Proc. Natl. Acad. Sci. U.S.A. 97 (26): 14329—33. DOI:10.1073/pnas.250494697. PMC 18918. PMID 11114188.
  14. 1 2 Marti A, Luo Z, Cunningham C, Ohta Y, Hartwig J, Stossel TP, Kyriakis JM, Avruch J (January 1997). “Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-alpha activation of SAPK in melanoma cells”. J. Biol. Chem. 272 (5): 2620—8. DOI:10.1074/jbc.272.5.2620. PMID 9006895.
  15. 1 2 Butch ER, Guan KL (February 1996). “Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2”. J. Biol. Chem. 271 (8): 4230—5. DOI:10.1074/jbc.271.8.4230. PMID 8626767.
  16. Elion EA (September 1998). “Routing MAP kinase cascades”. Science. 281 (5383): 1625—6. DOI:10.1126/science.281.5383.1625. PMID 9767029. S2CID 28868990.
  17. Yung Y, Yao Z, Hanoch T, Seger R (May 2000). “ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK”. J. Biol. Chem. 275 (21): 15799—808. DOI:10.1074/jbc.M910060199. PMID 10748187.
  18. 1 2 Zheng CF, Guan KL (November 1993). “Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases”. J. Biol. Chem. 268 (32): 23933—9. PMID 8226933.
  19. Pettiford SM, Herbst R (February 2000). “The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP”. Oncogene. 19 (7): 858—69. DOI:10.1038/sj.onc.1203408. PMID 10702794.
  20. Saxena M, Williams S, Taskén K, Mustelin T (September 1999). “Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase”. Nat. Cell Biol. 1 (5): 305—11. DOI:10.1038/13024. PMID 10559944. S2CID 40413956.
  21. Saxena M, Williams S, Brockdorff J, Gilman J, Mustelin T (April 1999). “Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)”. J. Biol. Chem. 274 (17): 11693—700. DOI:10.1074/jbc.274.17.11693. PMID 10206983.
  22. Roux PP, Richards SA, Blenis J (July 2003). “Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity”. Mol. Cell. Biol. 23 (14): 4796—804. DOI:10.1128/mcb.23.14.4796-4804.2003. PMC 162206. PMID 12832467.
  23. Zhao Y, Bjorbaek C, Moller DE (November 1996). “Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases”. J. Biol. Chem. 271 (47): 29773—9. DOI:10.1074/jbc.271.47.29773. PMID 8939914.
  24. Mao C, Ray-Gallet D, Tavitian A, Moreau-Gachelin F (February 1996). “Differential phosphorylations of Spi-B and Spi-1 transcription factors”. Oncogene. 12 (4): 863—73. PMID 8632909.

ЛитератураПравить

СсылкиПравить