CD79A (англ. B-cell antigen receptor complex-associated protein alpha chain) — мембранный белок, продукт гена человека CD79A[5]. Вместе с родственным белком CD79B образует гетеродимер, ассоциированный с мембрано-связанным иммуноглобулином на поверхности B-лимфоцита, что формирует B-клеточный рецептор. Аналогичным образом CD79A ассоциирует с CD3 в Т-клеточном рецепторе и позволяет клетке отвечать на присутствие антигена на клеточной поверхности[6]. Ген связан с развитием агаммаглобулинемии 3-го типа[7].
Ген CD79A мыши был клонирован в 1980-х годах[8], ген CD79A человека был открыт в начале 1990-х годов[9][10]. Короткий ген длиной 4.3 kb содержит 5 экзонов.
Ген CD79A характеризуется консервативной последовательностью в ходе эволюции, начиная с лучепёрых рыб, но отсутствует у хрящевых рыб, таких как акулы[11]. Таким образом, появление CD79A совпадает с эволюцией B-клеточного рецептора с более широким разнообразием в результате рекомбинации множественных элементов V, D и J у костистых рыб по сравнению с единственными элементами V, D и J у акул[12].
CD79A состоит из 226 аминокислот, молекулярная масса 30,0 кДа. В результате альтернативного сплайсинга образуется 2 изофомы[5]. Это мембранный белок с внеклеточным иммуноглобулиновым доменом, одним трансмембранным участком и коротким цитоплазматическим доменом[5]. Цитоплазматический участок содержит множественные участки фосфорилирования, включая консервативный мотив связывания с двойным фосфотирозином ITAM[13][14]. Более крупная изоформа у человека содержит участок 88-127, образуя полный иммуноглобулиновый домен, тогда как короткая изоформа имеет укороченный иммуноглобулиновый домен[5] CD79a has several cysteine residues, one of which forms covalent bonds with CD79b.[15].
CD79a имеет несколько функций в развитии и функционировании B-клеток. Гетеродимер CD79a/b нековалентно ассоциирован с тяжёлой цепью иммуноглобулина через свой трансмембранный домен и образует либо B-клеточный рецептор вместе с лёгкой цепью иммуноглобулина, либо пре-B-клеточный рецептор вместе с суррогатной лёгкой цепью в развивающихся B-клетках. Ассоциация гетеродимера CD79a/b с тяжёлой цепью иммуноглобулина необходима для поверхностной экспрессии B-клеточного рецептора и индуцируемого рецептором входа кальция и фосфорилирования тирозина[16]. Генетическая делеция трансмембранного экзона в гене CD79A приводит к потере белка и полной блокировки развития B-клеток на этапе перехода про-B- в пре-B-клетку[17]. Аналогично, у больных с гомозиготным вариантом сплайсинга развивается потеря трансмембранного участка и укороченный белок или его отсутствие приводит к агаммаглобулинемии и дефицита периферических B-клеток[7][18][19].
Остатки тирозина в ITAM-мотиве CD79a (Tyr188 и Tyr199 у человека; Tyr182 и Tyr193 у мыши), которые фосфорилируются в ответ на перешивку B-клеточного рецептора, играют критическую роль в связывании Syk-киназ и переносе сигнала[20][21]. Кроме этого, тирозины ITAM-мотивов CD79a и CD79b синергически опосредуют переход про-B- в пре-B-клетки[22][23]. Потеря одного из двух ITAM-мотивов CD79a/b приводит к нарушению развития B-клеток, однако независимый от T-клеток ответ типа II и опосредуемый B-клеточным рецептором вход кальция остаётся нормальным. Однако наличие обоих функциональных ITAM-мотивов CD79a/b необходимо для нормального T-лимфоцит-зависимого ответа[22][24]. Цитоплазматический домен CD79a содержит дистальный от ITAM-мотива тирозин (Tyr210 у человека, Tyr204 у мыши), который после фосфорилирования может связываться с BLNK и Nck[25][26][27] и критически важен для рецептор-опосредованной пролиферации B-клеток и развития В1-клеток[28]. Фосфорилирование тирозинов ITAM-мотива и перенос сигнала отрицательно регилируется остатками серина и треонина, расположенных вблизи мотива (Ser197, Ser203, Thr209 у человека; Ser191, Ser197, Thr203 у мыши)[29][30] и играет роль в ограничении образования плазматических клеток костного мозга, секретирующих IgG2a и IgG2b[23].
Белок CD79a присутствует на поверхности только B-клеток, что делает его надёжным маркёром B-лимфоцитов в иммуногистохимических исследованиях. Белок также остаётся на B-клетках после их трансформации в плазматические клетки, а также на практически всех B-клеточных неоплазмах, включая B-клеточные лимфомы, плазмацитомы и миеломы. CD79a экспрессирован на аномальных лимфоцитах в некоторых случаях болезни Ходжкина. Поскольку CD79a находится на предшественниках B-клеток, этот белок может использоваться для окрашивания более широкого спектра клеток, чем стандартный B-клеточный маркёр CD20, экспрессируемый главным образом на зрелых B-клеточных лимфомах, и, таким образом, часто оба маркёра применяются в иммуногистохимических панелях одновременно[6].
↑ Ha HJ, Kubagawa H, Burrows PD (Mar 1992). “Molecular cloning and expression pattern of a human gene homologous to the murine mb-1 gene”. Journal of Immunology. 148 (5): 1526—31. PMID1538135.
↑ Cambier JC (Oct 1995). “Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM)”. Journal of Immunology. 155 (7): 3281—5. PMID7561018.
↑ Pelanda R, Braun U, Hobeika E, Nussenzweig MC, Reth M (Jul 2002). “B cell progenitors are arrested in maturation but have intact VDJ recombination in the absence of Ig-alpha and Ig-beta”. Journal of Immunology. 169 (2): 865—72. DOI:10.4049/jimmunol.169.2.865. PMID12097390.
↑ Wang Y, Kanegane H, Sanal O, Tezcan I, Ersoy F, Futatani T, Miyawaki T (Apr 2002). “Novel Igalpha (CD79a) gene mutation in a Turkish patient with B cell-deficient agammaglobulinemia”. American Journal of Medical Genetics. 108 (4): 333—6. DOI:10.1002/ajmg.10296. PMID11920841.
↑ Reth M, Wienands J (1997). “Initiation and processing of signals from the B cell antigen receptor”. Annual Review of Immunology. 15 (1): 453—79. DOI:10.1146/annurev.immunol.15.1.453. PMID9143696.
↑ Castello A, Gaya M, Tucholski J, Oellerich T, Lu KH, Tafuri A, Pawson T, Wienands J, Engelke M, Batista FD (Sep 2013). “Nck-mediated recruitment of BCAP to the BCR regulates the PI(3)K-Akt pathway in B cells”. Nature Immunology. 14 (9): 966—75. DOI:10.1038/ni.2685. PMID23913047. S2CID2532325.
↑ Patterson HC, Kraus M, Kim YM, Ploegh H, Rajewsky K (Jul 2006). “The B cell receptor promotes B cell activation and proliferation through a non-ITAM tyrosine in the Igalpha cytoplasmic domain”. Immunity. 25 (1): 55—65. DOI:10.1016/j.immuni.2006.04.014. PMID16860757.
Müller B, Cooper L, Terhorst C (Jun 1992). “Cloning and sequencing of the cDNA encoding the human homologue of the murine immunoglobulin-associated protein B29”. European Journal of Immunology. 22 (6): 1621—5. DOI:10.1002/eji.1830220641. PMID1534761. S2CID23910309.
Hutchcroft JE, Harrison ML, Geahlen RL (Apr 1992). “Association of the 72-kDa protein-tyrosine kinase PTK72 with the B cell antigen receptor”. The Journal of Biological Chemistry. 267 (12): 8613—9. PMID1569106.
Yu LM, Chang TW (Jan 1992). “Human mb-1 gene: complete cDNA sequence and its expression in B cells bearing membrane Ig of various isotypes”. Journal of Immunology. 148 (2): 633—7. PMID1729378.
Lankester AC, van Schijndel GM, Cordell JL, van Noesel CJ, van Lier RA (Apr 1994). “CD5 is associated with the human B cell antigen receptor complex”. European Journal of Immunology. 24 (4): 812—6. DOI:10.1002/eji.1830240406. PMID7512031. S2CID25093082.
Brown VK, Ogle EW, Burkhardt AL, Rowley RB, Bolen JB, Justement LB (Jun 1994). “Multiple components of the B cell antigen receptor complex associate with the protein tyrosine phosphatase, CD45”. The Journal of Biological Chemistry. 269 (25): 17238—44. PMID7516335.