Это не официальный сайт wikipedia.org 01.01.2023

Число Армстронга — Википедия

Число Армстронга

Число Армстронга (также самовлюблённое число, совершенный цифровой инвариант; англ. pluperfect digital invariant, PPDI)  — натуральное число, которое в данной системе счисления равно сумме своих цифр, возведённых в степень, равную количеству его цифр. Иногда, чтобы считать число таковым, достаточно, чтобы степени, в которые возводятся цифры, были равны m — тогда число можно назвать m-самовлюблённым.

Например, десятичное число 153 — число Армстронга, потому что

13 + 53 + 33 = 153.

Формальное определениеПравить

Пусть n = i = 1 k d i b i 1   — число, записываемое d k d k 1 . . . d 1   в системе счисления с основанием b  .

Если при некотором m   случится так, что n = i = 1 k d i m  , то n   является m  -самовлюблённым числом. Если, сверх того, m = k  , то n   можно назвать истинным числом Армстронга.

Очевидно, что при любом m   может существовать лишь конечное число m  -самовлюблённых чисел, так как, начиная с некоторого k  , k 9 k < 10 k 1 1  .

Упоминания в литературеПравить

В «Апологии математика» Харди писал[1][2]:

«Существуют только четыре числа (кроме 1), равных сумме кубов цифр, например,
153 = 13 + 53 + 33, 370 = 33 + 73 + 03,
371 = 33 + 73 + 13, 407 = 43 + 03 + 73.
Всё это забавные факты, весьма подходящие для газетных колонок с головоломками, способные позабавить любителей, но ничего в них не затронет сердце математика.»

Числа Армстронга в десятичной системеПравить

В десятичной системе существует всего 88 чисел Армстронга. В промежутке 1 <= N <= 10 находятся следующие 32 N-значные числа Армстронга[3]:

1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54 748, 92 727, 93 084, 548 834, 1 741 725, 4 210 818, 9 800 817, 9 926 315, 24 678 050, 24 678 051, 88 593 477, 146 511 208, 472 335 975, 534 494 836, 912 985 153, 4 679 307 774.

Самое большое число Армстронга содержит 39 цифр: 115 132 219 018 763 992 565 095 597 973 971 522 401.

Числа Армстронга в других системах счисленияПравить

Похожие классы чиселПравить

Иногда терминами «самовлюблённые числа» называют любой тип чисел, которые равны некоторому выражению от их собственных цифр. Например, таковыми могут быть: совершенные и дружественные числа, числа Брауна, числа Фридмана, счастливые билеты и тому подобные.

ПримечанияПравить

  1. 1 2 3 Weisstein, Eric W. Narcissistic Number (англ.) на сайте Wolfram MathWorld.
  2. Г. Х. Харди. Апология математика / пер. с англ. Ю. А. Данилова. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000. — 104 с.
  3. Последовательность A005188 в OEIS: числа Армстронга = Armstrong (or Plus Perfect, or narcissistic) numbers: n-digit numbers equal to sum of n-th powers of their digits
  4. Последовательность A010344 в OEIS: числа Армстронга или самовлюблённые числа по основанию 4 (записанные в десятичной системе счисления)

ЛитератураПравить

СсылкиПравить