Физический закон
Физи́ческий зако́н — устойчивые повторяющиеся объективные закономерности, существующие в природе[1]. Открытые человечеством физические законы представляют собой эмпирически установленные и выраженные в строгой словесной и/или математической формулировке устойчивые, повторяющиеся в эксперименте связи между физическими величинами в явлениях, процессах и состояниях тел и других материальных объектов в окружающем мире[2].
Выявление физических закономерностей составляет основную задачу физической науки.
Независимость физических законов от выбора единиц измерения физических величин называется принципом метрической инвариантности.[3]
ОписаниеПравить
Для того, чтобы некая связь могла быть названа физическим законом, она должна удовлетворять следующим требованиям:
- Эмпирическое подтверждение: физический закон считается установленным, если имеет экспериментальное подтверждение.
- Универсальность: математическое выражение частного закона, определяющего связи между параметрами одной конкретной системы, может иногда описывать самые разнообразные явления. Кроме того, в соответствии с принципом единства законов природы, частные законы применимы, в пределах существующих ограничений параметров объекта и среды, в любой точке Вселенной, а всеобщие законы одинаково действуют на всех уровнях организации материи в пространстве и времени, а также определяют природу Вселенной.[4][5]
- Устойчивость: свойства Вселенной определяют неизменность физических законов[6].
Хотя физические законы, как правило, выражаются в виде строгого словесного утверждения и/или математической формулы, по выражению нобелевского лауреата Поля Дирака, «физический закон должен обладать математической красотой»[7]. Кроме того, интересен следующий факт: было отмечено, что из 35 законов элементарной физики лишь 17 формулируются при помощи математических уравнений и из более чем 300 понятий лишь около 50 вводятся при помощи формул, остальные формулируются и вводятся лишь словесно[8].
ПримерыПравить
Одними из самых известных физических законов являются[9]:
Законы-принципыПравить
Некоторые физические законы не могут быть доказаны и являются основными, то есть носят универсальный характер в рамках области применения и по своей сути являются определениями. Такие законы часто называют принципами.[10] Они являются обобщением экспериментальных фактов. К ним относятся, например, второй закон Ньютона (определение силы), закон сохранения энергии[11] (определение энергии), принцип наименьшего действия (определение действия) и др.
Также существует ряд физических принципов, являющихся самыми широкими, всеохватывающим обобщениями частных законов физики.[10] В их число входят: принцип неопределённости, принцип причинности, принцип дополнительности, принцип эквивалентности, принцип релятивистской инвариантности и т. д.[12]. Они формулируются как идеи, обобщающие экспериментальные данные и позволяющие единообразно объяснить всю совокупность рассматриваемых данной теорией явлений.[10]
Некоторые физические теории: классическая механика, термодинамика, теория относительности, строятся на основе небольшого числа исходных физических принципов, из которых в качестве следствия выводятся все частные законы[13]. Такой подход к изучению явлений природы получил название метода принципов. Его основоположниками являются Ньютон и Эйнштейн.[10][14]
Метод принципов не использует никаких гипотез о внутренних механизмах изучаемых явлений. Он непосредственно опирается на обобщения опытных фактов, которые и считаются принципами.[15] Ценность метода принципов заключается в прочности достигаемых с его помощью результатов.[16]
Законы-следствия симметрийПравить
Часть физических законов являются простыми следствиями некоторых симметрий, существующих в системе. Так, законы сохранения согласно теореме Нётер являются следствиями симметрии пространства и времени. А принцип Паули, например, является следствием идентичности электронов (антисимметричность их волновой функции относительно перестановки частиц).
Приблизительность законовПравить
Все физические законы являются следствием эмпирических наблюдений и верны с той точностью, с которой верны экспериментальные наблюдения. Это ограничение не позволяет утверждать, что какой-либо из законов носит абсолютный характер. Известно, что часть законов заведомо не являются абсолютно точными, а представляют собой приближения к более точным. Так, законы Ньютона справедливы только для достаточно массивных тел, двигающихся со скоростями, значительно меньшими скорости света. Более точными являются законы квантовой механики и специальной теории относительности. Однако, и они в свою очередь являются приближениями более точных уравнений квантовой теории поля.
См. такжеПравить
ПримечанияПравить
- ↑ Трофимова Т. И. Курс физики: учеб. пособие для вузов. — 11. — Москва: Издательский центр «Академия», 2006. — С. 5. — 560 с. — ISBN 5-7695-2629-7. Архивная копия от 18 ноября 2017 на Wayback Machine
- ↑ Селезнев Ю. А. Основы элементарной физики. — М., Наука, 1966. — С. 11 — 408 с.
- ↑ Стручков В.В., Яворский Б.М, Вопросы современной физики. — М., Просвещение, 1973. — Тираж 81000 экз. — с. 8
- ↑ Ханнанов Н. К., Чижов Г. А. Физика. Учебник для классов с углубленным изучением физики. 10 класс. — 1. — ДРОФА, 2013. — С. 350-390. — 481 с. — ISBN 978-5-358-12648-0. Архивная копия от 6 октября 2019 на Wayback Machine
- ↑ Малов И. Ф. Универсальность законов природы (Жизнь на Земле, во Вселенной). (неопр.) Мир Культуры (22 октября 2014). Дата обращения: 6 октября 2019. Архивировано 6 октября 2019 года.
- ↑ Розенталь И. Л. Физические закономерности и численные значения фундаментальных постоянных. Архивная копия от 4 марта 2016 на Wayback Machine Успехи физических наук (1980 г. ).— Том 131, вып. 2. — Дата обращения 06 октября 2019 года.
- ↑ Медведев Б В, Ширков Д В. П. А. М. Дирак и становление основных представлений квантовой теории поля (рус.) // Успехи физических наук. — 1987-09-01. — Т. 153, вып. 9. — С. 59–104. — ISSN 0042-1294. Архивировано 6 октября 2019 года.
- ↑ Селезнев Ю. А. Основы элементарной физики. - М., Наука, 1966. - Тираж 100 000 экз. - с. 401
- ↑ 100 великих научных открытий / Д. К. Самин. — М.: Вече, 2002. — 480 с. — 25 000 экз. — ISBN 5-7838-1085-1.
- ↑ 1 2 3 4 Сивухин Д. В. Общий курс физики. Механика. — М., Наука, 1979. — Тираж 50 000 экз. — с. 11
- ↑ Сивухин Д. В. Общий курс физики. Механика. — М., Наука, 1979. — Тираж 50 000 экз. — с. 149
- ↑ Селезнев Ю. А. Основы элементарной физики. — М., Наука, 1966. — Тираж 100 000 экз. — с. 11
- ↑ Мощанский В. Н. Формирование мировоззрения учащихся при изучении физики. — М., Просвещение, 1976. — Тираж 80 000 экз. — с. 114
- ↑ Эйнштейн А. Физика и реальность. — М., Наука, 1965. — 359 c.
- ↑
Вавилов С. И. Собр. соч., т. III. — АН СССР, 1956. — c. 156При этом обобщение выражается только в распространении найденного опытного факта на более широкую группу явлений. В конкретной формулировке принципа содержится только констатирование опыта в адекватной математической форме.
- ↑
Вавилов С. И. Собр. соч., т. III. — АН СССР, 1956. — c. 385Физика принципов несокрушима: принципы могут обобщаться, несколько изменяться, дополняться, но рушиться полностью они не могут, поскольку они суть выражение прямого опыта.
ЛитератураПравить
- Pичард Фейнман. Характер физических законов. — Издание второе, исправленное. (1-е изд.— М., «Мир» 1968 г.). — М.: Наука, 1987. — 160 с. — 163 000 экз.
- Claus Kiefer. On the Concept of Law in Physics (англ.) // Proceedings of the conference «The concept of law in science», Heidelberg, 4-5 June 2012. — arXiv:1301.5110.
Для улучшения этой статьи желательно:
|