Упаковка квадратов в квадрате
Упаковка квадратов в квадрате — одна из задач упаковки. Состоит в определении минимального размера квадратного контейнера ( — сторона контейнера) в который умещается единичных квадратов (квадратов с размером стороны равной 1).
Впервые задача рассматривалась Эрдёшем и Грэмом в работе [1], до этого существовала как задача для венгерских студентов математиков в учебнике Эрдёша. В общем виде не решена [2].
Простейшим является случай, когда есть квадрат целого числа (), с решением — и незаполненным пространством, равным нулю.
Малое число квадратовПравить
Для малого числа единичных квадратов оптимальные решения найдены для случаев , , , , , , , .[2]
Если является полным квадратом, то наименьшее значение стороны квадратного контейнера . Для оптимальных решений при малых , кроме случаев и , упаковка представляет собой единичные квадраты, расположенные параллельно сторонам контейнера с размером . Для и оптимальной является упаковка, использующая повёрнутые квадраты (см. рисунки справа)[2]. Решение для дано Гёбелем [3] в 1979 году.
Оптимальность упаковки для впервые доказана Эль Мумни [4] в 1999 году, для — Керни и Шиу [5] в 2002 году, а в 2003 Стромквист [6] доказал оптимальность решения для . В 2010 году Бентц [7] находит оптимальное решение для и
Минимальным числом единичных квадратов, для которого на данный момент не найден оптимальный вариант упаковки, является . Для этого случая наилучшая упаковка предложенна Стромквистом[6]. Она дает размер стороны контейнера .
Асимптотические результатыПравить
В асимптотическом случае задача была сформулирована Эрдёшем и Грэмом в работе [1] следующим образом. Необходимо определить какое максимальное количество единичных квадратов может уместиться в большой квадратный контейнер со стороной размером . При решении этой задачи нужно минимизировать незанятое пространство, определенное в [1] как
,
где есть множество всех возможный упаковок единичных квадратов, а есть количество единичных квадратов. Отметим, что в случае целочисленного получаем и .
В случае не целочисленного значения и «наивной» упаковки в виде рядов единичных квадратов, параллельных стенам контейнера, у незанятого пространства наблюдается линейный рост относительно [8]:
.
Эрдёш и Грэм показали [1], что существует упаковка, дающая существенно нелинейную зависимость незанятого пространства от размера контейнера (запись в терминах «O» большое), и выдвинули гипотезу, что асимптотическое поведение оптимальной упаковки . Однако Рот и Воган в работе [9], для асимптотики из полуцелых значений , получили , где есть некая константа.
На данный момент наилучшей упаковкой в асимптотическом случае является упаковка, предложенная Грэмом и Чоном в работе [8] с асимптотикой , а точная асимптотическая скорость роста незаполненного пространства остаётся открытой проблемой
См. такжеПравить
ПримечанияПравить
- ↑ 1 2 3 4 Erdős, Graham, 1975.
- ↑ 1 2 3 Friedman, 2009.
- ↑ Gobel, 1979.
- ↑ Moumni, 1999.
- ↑ Kearney, Shiu, 2002.
- ↑ 1 2 Stromquist, 2003.
- ↑ Bentz, 2010.
- ↑ 1 2 Chung, Graham, 2020.
- ↑ Roth, Vaughan, 1978, с. 170–186.
ЛитератураПравить
- Bentz W. Optimal packings of 13 and 46 unit squares in a square (англ.) // Electronic Journal of Combinatorics. — 2010. — Vol. 17. — P. R126.
- Brass P.,Moser W.,Pach J. Research Problems in Discrete Geometry (англ.). — New York: Springer, 2005. — ISBN 978-0387-23815-9.
- Chung F., Graham R. Efficient packings of unit squares in a large square (англ.) // Discrete & Computational Geometry. — Springer, 2020. — Vol. 64. — P. 690—699.
- Erdős P.,Graham R. On packing squares with equal squares (англ.) // Journal of Combinatorial Theory. — 1975. — Vol. 19. — P. 119–123. — doi:10.1016/0097-3165(75)90099-0.
- Friedman E. Packing unit squares in squares: a survey and new results (англ.) // Electronic Journal of Combinatorics. — 2009. — Iss. Dynamic Survey. — P. DS7: Aug 14, 2009.
- Gensane T.,Ryckelynck F. Improved dense packings of congruent squares in a square (англ.) // Discrete & Computational Geometry. — 2005. — Vol. 34, iss. 1. — P. 97–109. — doi:10.1007/s00454-004-1129-z.
- Gőbel F. Geometrical Packing and Covering Problem (англ.) // Packing and Covering in Combinatorics / (ed.) A. Schrijver. — Math Centrum Tracts, 1979. — Vol. 106. — P. 179—199.
- Kearney M. J.,Shiu P. Efficient packing of unit squares in a square (англ.) // Electronic Journal of Combinatorics. — 2002. — Vol. 9, iss. 1. — P. R14.
- El Moumni S. Optimal Packing of Unit Squares in a Square (англ.) // Studia Sci. Math. Hungar.. — 1999. — Vol. 35, no. 3—4. — P. 281—290.
- Roth K. F., Vaughan R. C. Inefficiency in packing squares with unit squares (англ.) // Journal of Combinatorial Theory. — 1978. — Vol. 24, iss. 2. — P. 170–186. — doi:10.1016/0097-3165(78)90005-5.
- Stromquist W. Packing 10 or 11 unit squares in a square (англ.) // Electronic Journal of Combinatorics. — 2003. — Vol. 10. — P. Research Paper 8.