Точка Брокара
Точка Брокара — одна из двух точек внутри треугольника, возникающих на пересечении отрезков, соединяющих вершины треугольника с соответствующими свободными вершинами треугольников, подобных данному треугольнику и построенных на его сторонах. Считаются замечательными точками треугольника, с их помощью строятся многие объекты геометрии треугольника (в том числе окружность Брокара, треугольник Брокара, окружность Нейберга).
Точка Брокара | |
---|---|
Точка Брокара треугольника , построенная как точка пересечения трёх окружностей | |
Барицентрические координаты | |
Трилинейные координаты | |
Код ЭЦТ | X(76) |
Связанные точки | |
Изотомически сопряженная | точка Лемуана |
Названы по имени французского метеоролога и геометра Анри Брокара, описавшего точки и их построение в 1875 году, однако были известны и ранее, в частности, были построены в одной из работ немецкого математика и архитектора Августа Крелле, изданной в 1816 году.
В энциклопедии центров треугольника первая точка Брокара идентифицируется как .
ОпределениеПравить
В треугольнике со сторонами , , и , противолежащими вершинам , и соответственно, имеется всего одна точка такая, что отрезки прямых , и образуют один и тот же угол со сторонами , и соответственно: . Точка называется первой точкой Брокара треугольника , а угол — углом Брокара треугольника.
Для угла Брокара выполняется следующее тождество: . Для угла Брокара выполняется следующее неравенство Йиффа: , где — углы искомого треугольника[1].
В треугольнике имеется также вторая точка Брокара , такая, что отрезки прямых , и образуют один и тот же угол со сторонами , и соответственно: . Вторая точка Брокара изогонально сопряжена с первой точкой Брокара, то есть угол равен углу .
Две точки Брокара тесно связаны друг с другом, различие между ними — в порядке, в котором нумеруются углы треугольника, так, например, первая точка Брокара треугольника совпадает со второй точкой Брокара треугольника .
ПостроениеПравить
Наиболее известное построение точек Брокара — на пересечении окружностей, строящихся следующим образом: для проводится окружность через точки и , касающаяся стороны (центр этой окружности находится в точке, которая лежит на пересечении серединного перпендикуляра к стороне с прямой, проходящей через и перпендикулярной ); аналогичным образом строится окружность через точки и и касающуюся стороны ; третья окружность — через точки и и касающаяся стороны . Эти три окружности имеют общую точку пересечения, являющуюся первой точкой Брокара треугольника . Вторая точка Брокара строится аналогично — строятся окружности: через и , касающаяся ; через и , касающаяся ; через и , касающаяся .
СвойстваПравить
Однородные трилинейные координаты для первой и второй точек Брокара есть и соответственно. Таким образом, их барицентрические координаты соответственно[2] и
Точки Брокара лежат на окружности Брокара — окружности, диаметрально построенной на отрезке, соединяющем центр описанной окружности с точкой Лемуана. На ней также лежат вершины первых двух треугольников Брокара. Точки Брокара сопряжены изогонально.
Точка Брокара — одна из 2 точек внутри треугольника, чьи чевианы образуют равные углы с тремя его сторонами, измеренными в трёх его вершинах.
См. такжеПравить
ПримечанияПравить
- ↑ Michiel Hazewinkel. Encyclopaedia of Mathematics, Supplement III. — Springer Science & Business Media, 2001-12-31. — С. 83. — 564 с. — ISBN 9781402001987.
- ↑ Scott, J. A. «Some examples of the use of areal coordinates in triangle geometry», Mathematical Gazette 83, November 1999, 472—477.
ЛитератураПравить
- С. И. Зетель. Новая геометрия треугольника. — М.: Учпедгиз, 1940. — С. 81—89. — 96 с.
- Akopyan, A. V. & Zaslavsky, A. A. (2007), Geometry of Conics, vol. 26, Mathematical World, American Mathematical Society, с. 48–52, ISBN 978-0-8218-4323-9
- Honsberger, Ross (1995), Chapter 10. The Brocard Points, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Washington, D.C.: The Mathematical Association of America
- Прасолов В. В. Точки Брокара и изогональное сопряжение (Серия "Библиотека «Математическое просвещение»"). М.:МЦНМО, 2000. 24 с.
- Яковлев И. В. Материалы по математике. Изогональное сопряжение. С. 5-6// https://mathus.ru/math/isogonal.pdf