Это не официальный сайт wikipedia.org 01.01.2023

Термодинамические циклы — Википедия

Термодинамические циклы

(перенаправлено с «Термодинамический цикл»)

Термодинами́ческие ци́клы — круговые процессы в термодинамике, то есть такие процессы, в которых совпадают начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура и энтропия).

Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу.

Компонентами любой тепловой машины являются рабочее тело, нагреватель и холодильник (с помощью которых меняется состояние рабочего тела).

Обратимым называют цикл, который можно провести как в прямом, так и в обратном направлении в замкнутой системе. Суммарная энтропия системы при прохождении такого цикла не меняется. Единственным обратимым циклом для машины, в которой передача тепла осуществляется только между рабочим телом, нагревателем и холодильником, является Цикл Карно. Существуют также другие циклы (например, цикл Стирлинга и цикл Эрикссона (англ.)), в которых обратимость достигается путём введения дополнительного теплового резервуара — регенератора. Общим (т.е. указанные циклы частный случай) для всех этих циклов с регенерацией является Цикл Рейтлингера. Можно показать (см. статью Цикл Карно), что обратимые циклы обладают наибольшей эффективностью.

Основные принципыПравить

Прямое преобразование тепловой энергии в работу запрещается постулатом Томсона (см. Второе начало термодинамики). Поэтому для этой цели используются термодинамические циклы.

Для того, чтобы управлять состоянием рабочего тела, в тепловую машину входят нагреватель и холодильник. В каждом цикле рабочее тело забирает некоторое количество теплоты ( Q 1  ) у нагревателя и отдаёт количество теплоты Q 2   холодильнику. Работа, совершённая тепловой машиной в цикле, равна, таким образом,

A = ( Q 1 Q 2 ) Δ U = Q 1 Q 2  ,

так как изменение внутренней энергии U   в круговом процессе равно нулю (это функция состояния).

Напомним, что работа не является функцией состояния, иначе суммарная работа за цикл также была бы равна нулю.

При этом нагреватель потратил энергию Q 1  . Поэтому тепловой, или, как его ещё называют, термический или термодинамический коэффициент полезного действия тепловой машины (отношение полезной работы к затраченной тепловой энергии) равен

η = A Q 1 = Q 1 Q 2 Q 1  .

Вычисление работы и КПД в термодинамическом циклеПравить

Работа в термодинамическом цикле, по определению, равна

A = C P d V  ,

где C   — контур цикла.

C другой стороны, в соответствии с первым началом термодинамики, можно записать

A = C δ Q d U = C δ Q = C T d S  .

Аналогичным образом, количество теплоты, переданное нагревателем рабочему телу, равно

Q 1 = A B δ Q = A B T d S  .

Отсюда видно, что наиболее удобными параметрами для описания состояния рабочего тела в термодинамическом цикле служат температура и энтропия.

Цикл Карно и максимальный КПД тепловой машиныПравить

Основная статья: Цикл Карно.

 
Цикл Карно в координатах T и S

Представим себе следующий цикл:

Фаза А→Б. Рабочее тело с температурой, равной температуре нагревателя, приводится в контакт с нагревателем. Нагреватель сообщает рабочему телу Q 1 = T H ( S 2 S 1 )   тепла в изотермическом процессе (при постоянной температуре), при этом объём рабочего тела увеличивается.

Фаза Б→В. Рабочее тело отсоединяется от нагревателя и продолжает расширяться адиабатически (без теплообмена с окружающей средой). При этом его температура уменьшается до температуры холодильника.

Фаза В→Г. Рабочее тело приводится в контакт с холодильником и передает ему Q 2 = T X ( S 2 S 1 )   тепла в изотермическом процессе. При этом объём рабочего тела уменьшается.

Фаза Г→А. Рабочее тело адиабатически сжимается до исходного размера, и его температура увеличивается до температуры нагревателя.

Его КПД равен, таким образом,

η = Q 1 Q 2 Q 1 = T H ( S 2 S 1 ) T X ( S 2 S 1 ) T H ( S 2 S 1 ) = T H T X T H  ,

то есть, зависит только от температур холодильника и нагревателя. Видно, что 100%-ный КПД можно получить только в том случае, если температура холодильника есть абсолютный нуль, что недостижимо.

Можно показать, что КПД тепловой машины Карно максимален в том смысле, что никакая тепловая машина с теми же температурами нагревателя и холодильника не может обладать бо́льшим КПД.

Заметим, что мощность тепловой машины Карно равна нулю, так как передача тепла в отсутствие разности температур идёт бесконечно медленно.

См. такжеПравить

СсылкиПравить

ЛитератураПравить

  • Базаров И. П. Термодинамика. (недоступная ссылка) М.: Высшая школа, 1991, 376 с.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-ое испр. М.: Едиториал УРСС, 2003. 120 с.
  • Дыскин Л.М., Пузиков Н.Т. Расчет термодинамических циклов.
  • Квасников И. А. Термодинамика и статистическая физика. Т.1: Теория равновесных систем: Термодинамика. Том.1. Изд. 2, испр. и доп. М.: УРСС, 2002. 240 с.
  • Сивухин Д. В. Общий курс физики. — М.: Наука, 1975. — Т. II. Термодинамика и молекулярная физика. — 519 с.
  • Александров А. А. Термодинамические основы циклов теплоэнергетических установок. Издательство МЭИ, 2004.