Теорема о девяти точках на кубической кривой
Теорема о 9 точках на кубической кривой — теорема алгебраической геометрии, которая гласит, что
Если 8 из 9 точек пересечения двух троек прямых (на рисунке справа — синих и красных) лежат на кубике (кривой третьего порядка, чёрной), то девятая тоже лежит на ней.
На этой теореме основана возможность определить структуру группы на кубической кривой.
ДоказательствоПравить
Ниже приведено простое доказательство, использующее исключительно факты из школьной программы. Оно состоит из трёх частей: двух лемм и собственно теоремы.
Лемма 1Править
Если многочлен от двух переменных в бесконечном числе точек на прямой принимает нулевое значение, то он делится на уравнение этой прямой, то есть .
Обозначим . В условии задана прямая, поэтому либо , либо не равно 0. Будем считать, что это , тогда , а . На прямой многочлен , но при этом может принимать бесконечное число различных значений, поэтому , а значит . ■
Лемма 2Править
Если кубики и пересекаются в трёх точках на прямой , то существует такое число , что .
Аналогично лемме 1 будем считать, что , тогда для точек прямой выполняется равенство , аналогично . Многочлены и равны 0 в трёх общих точках, их степень не выше 3, поэтому существует такое число , что для всех точек на этой прямой. Применив лемму 1, получаем доказываемое утверждение. ■
Доказательство теоремыПравить
В дальнейшем для краткости параметры многочленов будут опущены. Обозначим уравнение чёрной кубики за , красных прямых за и , а красной кубики за . Аналогично для синих прямых и кубики . При этом будем считать нумерацию такой, что необходимо доказать принадлежность точки пересечения кубике .
Применив для прямой и кубик и лемму 2, получаем, что существует число , для которого . Аналогично существует такое , что . Тогда многочлен третьей степени делится на и , то есть . Многочлен равен нулю для всех точек прямой , прямые и общего положения, а значит принимает значение 0 ровно в одной точек прямой . Поэтому равно нулю в бесконечном числе точек прямой и по лемме 1 делится на её уравнение. Таким образом , а значит , где — многочлен степени не выше первой, то есть прямая или нуль.
Предположим, что — прямая. Левая часть равенства равна нулю в точках и , а значит один из трёх множителей в правой части также равен нулю. Но прямые и не проходят через эти точки, поэтому все они лежат на одной прямой — . Но это невозможно.
Таким образом , а значит . Но кубики и проходят через точку , а значит и кубика проходит через эту точку. ■
ПрименениеПравить
С помощью теоремы о 9 точках просто доказываются некоторые факты из проективной геометрии, например теорема Паскаля:
Если шестиугольник вписан в коническое сечение, то точки пересечения трёх пар противоположных сторон лежат на одной прямой.
На рисунке справа шестиугольник с 3 красными и 3 синими сторонами вписан в чёрную параболу. Красные и синие прямые пересекаются в 9 зелёных точках, 6 из которых лежат на параболе, а через 2 другие проведена чёрная прямая. Поскольку чёрная кубика, содержит 8 зелёных точек, образованных пересечением красной и синей кубик, она содержит и девятую точку. Но эта точка не лежит на параболе, а значит она принадлежит прямой. ■
Также она может использоваться для доказательства ассоциативности операции сложения точек на эллиптической кривой[1]. А именно, если A, B, C, O принадлежат кубической кривой. Для трёх прямых BC, O (A + B) и A (B + C); и для трёх прямых AB, O (B + C) и C (A + B). Следующие восемь точек А, В, С, А + В, -А-В, В + С, -B-C, O лежат на кубике. Следовательно и девятая точка -A-(B+C)=-(A+B)-C принадлежит ей.
Теорема ШаляПравить
Теорема Шаля — обобщение для случая, когда взяты не тройки прямых, а произвольные кубики[2]:
Если в проективной плоскости две кубики имеют 9 общих точек, то любая другая кубика, проходящая через 8 из них, проходит и через девятую.
ПримечанияПравить
- ↑ В. В. Острик, М. А. Цфасман. Алгебраическая геометрия и теория чисел: рациональные и эллиптические кривые. — М.: МЦНМО, 2001. — С. 20—24. — 48 с. — (Математическое просвещение). — ISBN 5-900916-71-5. Архивная копия от 28 декабря 2010 на Wayback Machine
- ↑ Д. Айзенбёд, М. Грин, Дж. Харрис. Теорема Кэли — Бахараха и гипотезы. — 1996. Архивная копия от 14 мая 2011 на Wayback Machine (англ.)