Теорема Томсена
Теорема Томсена, названная именем немецкого математика Герхарда Томсена[en], — это теорема элементарной геометрии, согласно которой определённая ломаная, построенная из отрезков, которые параллельны сторонам треугольника, всегда завершается в начальной точке.
ФормулировкаПравить
Рассмотрим произвольный треугольник с точкой на стороне . Последовательность точек и параллельных прямых строится следующим образом: параллельная стороне прямая через точку пересекает сторону в точке , а параллельная стороне прямая, проходящая через точку , пересекает сторону в точке . Продолжим аналогичное построение. Параллельная стороне прямая через точку пересекает сторону в точке , а параллельная стороне прямая через точку пересекает сторону в точке . Наконец, параллельная стороне прямая через точку пересекает сторону в точке , а параллельная стороне прямая через точку пересекает сторону в точке . Теорема Томсена утверждает, что точки и совпадают, поэтому построение всегда приводит к замкнутому пути .
ДоказательствоПравить
Наличие в условии теоремы большого числа различных пар параллельных прямых, пересекающих стороны треугольника, даёт возможность многократного использования теоремы Фалеса о пропорциональных отрезках, из которой следуют соотношения:
Таким образом, . Отсюда, по теореме, обратной к теореме Фалеса, получаем, что . Но по условию . Поэтому .
См. такжеПравить
ЛитератураПравить
- Satz von Thomsen // Schülerduden – Mathematik II. — Bibliographisches Institut & F. A. Brockhaus, 2004. — С. 358–359. — ISBN 3-411-04275-3. (Немецкий язык)
СсылкиПравить
- Darij Grinberg: Schließungssätze in der ebenen Geometrie (Немецкий язык)
- Weisstein, Eric W. Thomsen's Figure (англ.) на сайте Wolfram MathWorld.
Для улучшения этой статьи желательно:
|