Это не официальный сайт wikipedia.org 01.01.2023

Изгибаемый многогранник — Википедия

Изгибаемый многогранник

(перенаправлено с «Теорема Сабитова»)

Изгибаемый многогранникмногогранник (точнее — многогранная поверхность), чью пространственную форму можно изменить непрерывной во времени деформацией, при которой каждая грань не изменяет своих размеров (то есть движется как твёрдое тело), а деформация осуществляется только за счёт непрерывного изменения двугранных углов. Такая деформация называется непрерывным изгибанием многогранника.

ПримерыПравить

СвойстваПравить

В теории изгибаемых многогранников известно немало красивых и нетривиальных утверждений. Ниже приведены наиболее важные из установленных на сегодня фактов:

  • Никакой выпуклый многогранник не может быть изгибаемым. Это немедленно вытекает из теоремы Коши об однозначной определённости выпуклого многогранника, доказанной в 1813 году.
  • Из формулы Шлефли следует, что любой изгибаемый многогранник в процессе изгибания сохраняет так называемую интегральную среднюю кривизну, то есть число, равное | | ( π α ( ) )  , где | |   — длина ребра  , α ( )   — величина внутреннего двугранного угла при ребре  , а сумма перебирает все рёбра многогранника[5].
  • Теорема Сабитова: любой изгибаемый многогранник в процессе изгибания сохраняет свой объём, то есть он будет изгибаться даже если его заполнить несжимаемой жидкостью[6].
  • В 2012 году, А. Гайфуллиным доказан многомерный аналог теоремы Сабитова — любой изгибаемый многогранник в размерности n 4   в процессе изгибания сохраняет свой объём.[7]

Вариации и обобщенияПравить

Всё сказанное выше относилось к многогранникам в трёхмерном евклидовом пространстве. Однако данное выше определение изгибаемого многогранника примени́мо и к многомерным пространствам и к неевклидовым пространствам, таким как сферическое пространство и пространство Лобачевского. Для них также известны как нетривиальные теоремы, так и открытые вопросы. Например:

  • Изгибаемые многогранники существуют во всех размерностях, как в евклидовом пространстве, так и в сферическом и в геометрии Лобачевского. Примеры аналогов изгибаемых октаэдров Брикара в трёхмерной сфере S 3   и в пространстве Лобачевского Λ 3   были построены Штахелем. Первый пример изгибаемого самопересекающегося четырёхмерного многогранника был построен А. Вальц. Наконец, примеры изгибаемых многогранников во всех размерностях и во всех трёх геометриях (евклидовой, сферической, Лобачевского) были построены Гайфуллиным.[8][9]
  • В сферическом пространстве любой размерности существует изгибаемый многогранник, объём которого непостоянен в процессе изгибания. Пример такого самопересекающегося многогранника в размерности 3 был построен в 1997 году Александровым[10], а пример несамопересекающегося многогранника в сферическом пространстве любой размерности — А. А. Гайфуллиным в его работе 2015 года[11]. Напротив, в трёхмерном пространстве Лобачевского, и вообще в пространстве Лобачевского любой нечётной размерности, объём изгибаемого многогранника обязан сохраняться (так же, как и в евклидовом случае).[12][13].

Открытые вопросыПравить

  • Верно ли, что многогранник Штеффена имеет наименьшее число вершин среди всех изгибаемых многогранников, не имеющих самопересечений[14];
  • Верно ли, что если один многогранник, не имеющий самопересечений, получен из другого многогранника, который также не имеет самопересечений, непрерывным изгибанием, то эти многогранники равносоставлены, то есть первый можно разбить на конечное число тетраэдров, каждый из этих тетраэдров независимо от других можно передвинуть в пространстве и получить разбиение второго многогранника[15].
  • В размерностях, начиная с 4, неизвестно, существуют ли изгибаемые несамопересекающиеся многогранники.[12]
  • Неизвестно, имеет ли место теорема о кузнечных мехах (должен ли сохраняться объём при изгибании) в пространствах Лобачевского чётной размерности (4, 6,...).[12]

Популярная литератураПравить

Научная литератураПравить

ПримечанияПравить

  1. R. Bricard. Mémoire sur la théorie de l’octaèdre articulé Архивировано 17 июля 2011 года.. J. Math. Pures Appl.[en] 1897. 3. P. 113—150 (см. также английский перевод Архивная копия от 3 марта 2016 на Wayback Machine).
  2. R. Connelly, The rigidity of polyhedral surfaces, Math. Mag. 52 (1979), no. 5, 275—283.
  3. М. Берже, Геометрия. М.: Мир, 1984. Т. 1. С. 516—517.
  4. В. А. Александров, Новый пример изгибаемого многогранника, Сиб. мат. журн. 1995. Т. 36, No 6. С. 1215—1224.
  5. R. Alexander, Lipschitzian mappings and total mean curvature of polyhedral surfaces. I, Trans. Amer. Math. Soc. 1985. Vol. 288, no. 2, 661—678.
  6. И. Х. Сабитов, Объем многогранника как функция длин его ребер, Фундам. прикл. матем. 1996. Т. 2, № 1. С. 305—307.
  7. А. Гайфуллин. Обобщение теоремы Сабитова на произвольные размерности  (неопр.) (2012). Дата обращения: 17 августа 2014. Архивировано 7 ноября 2017 года.
  8. H. Stachel, Flexible octahedra in the hyperbolic space, в книге под ред. A. Prékopa: Non-Euclidean geometries. János Bolyai memorial volume. Papers from the international conference on hyperbolic geometry, Budapest, Hungary, July 6—12, 2002. New York, NY: Springer. Mathematics and its Applications 581, 209—225 (2006).
  9. А. А. Гайфуллин, Изгибаемые кросс-политопы в пространствах постоянной кривизны, Тр. МИАН, 286 (2014), 88–128.
  10. V. Alexandrov, An example of a flexible polyhedron with nonconstant volume in the spherical space, Beitr. Algebra Geom. 38, No.1, 11—18 (1997). ISSN 0138-4821.
  11. А. А. Гайфуллин, Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами Архивная копия от 7 февраля 2017 на Wayback Machine, Тр. МИАН, 288 (2015), 67–94.
  12. 1 2 3 "Изгибаемые многогранники", Математические этюды, http://www.etudes.ru/ru/etudes/sabitov/ Архивная копия от 31 января 2017 на Wayback Machine
  13. А. А. Гайфуллин, Аналитическое продолжение объема и гипотеза кузнечных мехов в пространствах Лобачевского Архивная копия от 7 февраля 2017 на Wayback Machine, Матем. сб., 206:11 (2015), 61–112
  14. И. Г. Максимов, Неизгибаемые многогранники с малым количеством вершин Архивная копия от 25 августа 2014 на Wayback Machine, Фундам. прикл. матем. 2006. Т. 12, No. 1. С. 143—165.
  15. См. стр. 231 книги под ред. А. Н. Колмогорова и С. П. Новикова: Исследования по метрической теории поверхностей. М.: Мир. 1980. На английском эта гипотеза была впервые опубликована в статье R. Connelly, The rigidity of polyhedral surfaces, Math. Mag. 1979. Vol. 52. P. 275—283.