Это не официальный сайт wikipedia.org 01.01.2023

Теоремы Гёделя о неполноте — Википедия

Теоремы Гёделя о неполноте

(перенаправлено с «Теорема Гёделя о неполноте»)

Теорема Гёделя о неполноте и вторая теорема Гёделя[~ 1] — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима формула, содержательно утверждающая непротиворечивость этой арифметики.

Обе эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.

ИсторияПравить

Ещё в начале XX века Давид Гильберт провозгласил цель аксиоматизировать всю математику, и для завершения этой задачи оставалось доказать непротиворечивость и логическую полноту арифметики натуральных чисел. 7 сентября 1930 года в Кёнигсберге проходил научный конгресс по основаниям математики, и на этом конгрессе 24-летний Курт Гёдель впервые обнародовал две фундаментальные теоремы о неполноте, показавшие, что программа Гильберта не может быть реализована: при любом выборе аксиом арифметики существуют теоремы, которые невозможно ни доказать, ни опровергнуть простыми (финитными) средствами, предусмотренными Гильбертом, а финитное доказательство непротиворечивости арифметики невозможно[6].

Это выступление не было заявлено заранее и произвело ошеломляющий эффект, Гёдель сразу стал всемирной знаменитостью, а программа Гильберта по формализации основ математики потребовала срочного пересмотра. 23 октября 1930 года результаты Гёделя были представлены Венской академии наук Хансом Ханом. Статья с обеими теоремами («О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах») была опубликована в научном ежемесячнике Monatshefte für Mathematik und Physik в 1931 году. Хотя доказательство второй теоремы Гёдель дал только в виде идеи, его результат был настолько ясен и неоспорим, что не вызвал сомнений ни у кого. Гильберт сразу признал ценность открытий Гёделя; первые полные доказательства обеих теорем были опубликованы в книге Гильберта и Бернайса «Основания математики» (1938). В предисловии ко второму тому авторы признали, что для достижения поставленной цели финитных методов недостаточно, и добавили в число логических средств трансфинитную индукцию; в 1936 году Герхард Генцен сумел доказать с помощью этой аксиомы непротиворечивость арифметики, однако логическая полнота так и осталась недостижимой[6]

Теорема Гёделя о неполнотеПравить

В первоначальной формеПравить

В своей формулировке теоремы о неполноте Гёдель использовал понятие ω-непротиворечивой формальной системы — более сильное условие, чем просто непротиворечивость. Формальная система называется ω-непротиворечивой, если для всякой формулы A(x) этой системы невозможно одновременно вывести формулы А(0), А(1), А(2), … и ∃x ¬A(x) (другими словами, из того, что для каждого натурального числа n выводима формула A(n), следует невыводимость формулы ∃x ¬A(x)). Легко показать, что ω-непротиворечивость влечёт простую непротиворечивость (то есть любая ω-непротиворечивая формальная система непротиворечива)[7].

В процессе доказательства теоремы строится такая формула A арифметической формальной системы S, что[7]:

Если формальная система S непротиворечива, то формула A невыводима в S; если система S ω-непротиворечива, то формула ¬A невыводима в S. Таким образом, если система S ω-непротиворечива, то она неполна[~ 2] и A служит примером неразрешимой формулы.

Формулу A иногда называют гёделевой неразрешимой формулой[8].

Интерпретация неразрешимой формулыПравить

В стандартной интерпретации[~ 3] формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в S. Следовательно, по теореме Гёделя, если только система S непротиворечива, то эта формула и в самом деле невыводима в S и потому истинна в стандартной интерпретации. Таким образом, для натуральных чисел формула A верна, но в S невыводима[9].

В форме РоссераПравить

В процессе доказательства теоремы строится такая формула B арифметической формальной системы S, что[10]:

Если формальная система S непротиворечива, то в ней невыводимы обе формулы B и ¬B; иначе говоря, если система S непротиворечива, то она неполна[~ 2], и B служит примером неразрешимой формулы.

Формулу B иногда называют россеровой неразрешимой формулой[11]. Эта формула немного сложнее гёделевой.

Интерпретация неразрешимой формулыПравить

В стандартной интерпретации[~ 3] формула B означает «если существует вывод формулы B, то существует вывод формулы ¬B». Согласно же теореме Гёделя в форме Россера, если формальная система S непротиворечива, то формула B в ней невыводима; поэтому, если система S непротиворечива, то формула B верна в стандартной интерпретации[12].

Обобщённые формулировкиПравить

Доказательство теоремы Гёделя обычно проводят для конкретной формальной системы (не обязательно одной и той же), соответственно утверждение теоремы оказывается доказанным только для одной этой системы. Исследование достаточных условий, которым должна удовлетворять формальная система для того, чтобы можно было провести доказательство её неполноты, приводит к обобщениям теоремы на широкий класс формальных систем. Пример обобщённой формулировки[13]:

Всякая достаточно сильная рекурсивно аксиоматизируемая непротиворечивая теория первого порядка неполна.

В частности, теорема Гёделя справедлива для каждого непротиворечивого конечно аксиоматизируемого расширения арифметической формальной системы S.

Полиномиальная формаПравить

После того как Юрий Матиясевич доказал диофантовость любого эффективно перечислимого множества и были найдены примеры универсальных диофантовых уравнений, появилась возможность сформулировать теорему о неполноте в полиномиальной (или диофантовой) форме[14][15][16][17]:

Для каждой непротиворечивой теории T можно указать такое целое значение параметра K, что уравнение
( e l g 2 + α ( b x y ) q 2 ) 2 + ( q b 5 60 ) 2 + ( λ + q 4 1 λ b 5 ) 2 + ( θ + 2 z b 5 ) 2 + ( u + t θ l ) 2 + ( y + m θ e ) 2 + ( n q 16 ) 2 + ( ( g + e q 3 + l q 5 + ( 2 ( e z λ ) ( 1 + x b 5 + g ) 4 + λ b 5 + λ b 5 q 4 ) q 4 ) ( n 2 n ) + ( q 3 b l + l + θ λ q 3 + ( b 5 2 ) q 5 ) ( n 2 1 ) r ) 2 + ( p 2 w s 2 r 2 n 2 ) 2 + ( p 2 k 2 k 2 + 1 τ 2 ) 2 + ( 4 ( c k s n 2 ) 2 + η k 2 ) 2 + ( r + 1 + h p h k ) 2 + ( a ( w n 2 + 1 ) r s n 2 ) 2 + ( 2 r + 1 + ϕ c ) 2 + ( b w + c a 2 c + 4 α γ 5 γ d ) 2 + ( ( a 2 1 ) c 2 + 1 d 2 ) 2 + ( ( a 2 1 ) i 2 c 4 + 1 f 2 ) 2 + ( ( ( a + f 2 ( d 2 a ) ) 2 1 ) ( 2 r + 1 + j c ) 2 + 1 ( d + o f ) 2 ) 2 + ( ( ( z + u + y ) 2 + u ) 2 + y K ) 2 = 0  
не имеет решений в неотрицательных целых числах, но этот факт не может быть доказан в теории T. Более того, для каждой непротиворечивой теории множество значений параметра K, обладающих таким свойством, бесконечно и алгоритмически неперечислимо.

Степень данного уравнения может быть понижена до 4 ценой увеличения количества переменных.

Набросок доказательстваПравить

В своей статье Гёдель даёт набросок основных идей доказательства[18], который приведён ниже с незначительными изменениями.

Каждому примитивному символу, выражению и последовательности выражений некоторой формальной системы[~ 4] S поставим в соответствие определённое натуральное число[~ 5]. Математические понятия и утверждения таким образом становятся понятиями и утверждениями о натуральных числах, и, следовательно, сами могут быть выражены в символизме системы S. Можно показать, в частности, что понятия «формула», «вывод», «выводимая формула» определимы внутри системы S, то есть можно восстановить, например, формулу F(v) в S с одной свободной натурально-числовой переменной v такую, что F(v), в интуитивной интерпретации, означает: v — выводимая формула. Теперь построим неразрешимое предложение системы S, то есть предложение A, для которого ни A, ни не-A невыводимы, следующим образом:

Формулу в S с точно одной свободной натурально-числовой переменной назовём класс-выражением. Упорядочим класс-выражения в последовательность каким-либо образом, обозначим n-е через R(n), и заметим, что понятие «класс-выражение», также как и отношение упорядочения R можно определить в системе S. Пусть α — произвольное класс-выражение; через [α;n] обозначим формулу, которая образуется из класс-выражения α заменой свободной переменной на символ натурального числа n. Тернарное отношение x = [y;z] тоже оказывается определимым в S. Теперь определим класс K натуральных чисел следующим образом:

nK ≡ ¬Bew[R(n);n]    (*)

(где Bew x означает: x — выводимая формула[~ 6]). Так как все определяющие понятия из этого определения можно выразить в S, то это же верно и для понятия K, которое из них построено, то есть имеется такое класс-выражение C, что формула [C;n], интуитивно интерпретируемая, обозначает, что натуральное число n принадлежит K. Как класс-выражение, C идентично некоторому определённому R(q) в нашей нумерации, то есть

C = R(q)

выполняется для некоторого определённого натурального числа q. Теперь покажем, что предложение [R(q);q] неразрешимо в S. Так, если предложение [R(q);q] предполагается выводимым, тогда оно оказывается истинным, то есть, в соответствии со сказанным выше, q будет принадлежать K, то есть, в соответствии с (*), будет выполнено ¬Bew[R(q);q], что противоречит нашему предположению. С другой стороны, если предположить выводимым отрицание [R(q);q], то будет иметь место ¬qK, то есть Bew[R(q);q] будет истинным. Следовательно, [R(q);q] вместе со своим отрицанием будет выводимо, что снова невозможно.

Связь с парадоксамиПравить

В стандартной интерпретации[~ 3] гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс[19].

Выражаемое формулой A утверждение не содержит порочного круга, поскольку изначально утверждается только, что некоторая конкретная формула, явную запись которой получить несложно (хоть и громоздко), недоказуема. «Только впоследствии (и, так сказать, по воле случая) оказывается, что эта формула в точности та, которой выражено само это утверждение»[19].

Вторая теорема ГёделяПравить

В формальной арифметике S можно построить такую формулу, которая в стандартной интерпретации[~ 3] является истинной в том и только в том случае, когда теория S непротиворечива. Для этой формулы справедливо утверждение второй теоремы Гёделя:

Если формальная арифметика S непротиворечива, то в ней невыводима формула, содержательно утверждающая непротиворечивость S.

Иными словами, непротиворечивость формальной арифметики не может быть доказана средствами этой теории. Однако, могут существовать доказательства непротиворечивости формальной арифметики, использующие средства, невыразимые в ней.

Набросок доказательстваПравить

Сначала строится формула Con, содержательно выражающая невозможность вывода в теории S какой-либо формулы вместе с её отрицанием. Тогда утверждение первой теоремы Гёделя выражается формулой ConG, где G — Гёделева неразрешимая формула. Все рассуждения для доказательства первой теоремы могут быть выражены и проведены средствами S, то есть в S выводима формула ConG. Отсюда, если в S выводима Con, то в ней выводима и G. Однако, согласно первой теореме Гёделя, если S непротиворечива, то G в ней невыводима. Следовательно, если S непротиворечива, то в ней невыводима и формула Con.

Историческое влияниеПравить

Специалисты дают самые разные, иногда даже полярные оценки исторической значимости теорем Гёделя. Часть учёных считает, что эти теоремы «перевернули» основания математики или даже всю теорию познания, и значение гениального открытия Гёделя будет постепенно открываться ещё долгое время[20]. Другие же (например, Бертран Рассел) призывают не преувеличивать, поскольку теоремы опираются на финитный формализм Гильберта[21][22].

Вопреки распространённому заблуждению, теоремы о неполноте Гёделя не предполагают, что некоторые истины так и останутся навеки непознанными. Кроме того, из этих теорем не следует, что человеческие способности к познанию так или иначе ограниченны. Нет, теоремы всего лишь показывают слабости и недостатки формальных систем[23].

Рассмотрим, например, следующее доказательство непротиворечивости арифметики[24].

Допустим, что аксиоматика Пеано для арифметики противоречива. Тогда из неё можно вывести любое утверждение, в том числе ложное. Однако все аксиомы Пеано очевидным образом истинны, а из истинных утверждений не может следовать ложный вывод — получаем противоречие. Следовательно, арифметика непротиворечива.

С точки зрения повседневной человеческой логики, это доказательство приемлемо и убедительно. Но оно не может быть записано по правилам теории доказательств Гильберта, поскольку в этих правилах семантика заменена на синтаксис, а истинность — на «выводимость»[24]. В любом случае теоремы Гёделя подняли философию математики на новый уровень.

См. такжеПравить

ПримечанияПравить

Комментарии
  1. Иногда упоминается как вторая теорема Гёделя «о доказательствах непротиворечивости»[1], «о неполноте»[2][3][4], «о неполноте арифметики»[5].
  2. 1 2 Формальная система, содержащая неразрешимую, то есть невыводимую и неопровержимую, формулу, называется неполной.
  3. 1 2 3 4 Интерпретация формул теории S называется стандартной, если её областью является множество неотрицательных целых чисел, символ 0 интерпретируется числом 0, функциональные буквы ', +, • интерпретируются прибавлением единицы, сложением и умножением соответственно, предикатная буква = интерпретируется отношением тождества.
  4. Гёдель использовал систему Principia Mathematica Уайтхеда и Рассела с оговоркой, что рассуждения применимы к широкому классу формальных систем
  5. Подобное сопоставление формул и натуральных чисел называется арифметизацией математики и было осуществлено Гёделем впервые. Эта идея впоследствии стала ключом к решению многих важных задач математической логики. См. Гёделева нумерация
  6. «Bew» сокр. от нем. «Beweisbar» — доказуемый, выводимый
Источники
  1. Клини 1957 с.513
  2. чл.-корр. РАН Лев Дмитриевич Беклемишев в «Введении в математическую логику»  (неопр.). Дата обращения: 7 января 2010. Архивировано 21 марта 2009 года.
  3. Толковый словарь по вычислительным системам - Page 205
  4. Доклады Академии наук СССР, Volume 262 - Page 799 (1982)
  5. Известия Академии наук СССР, Volume 50 - Page 1140 (1986)
  6. 1 2 Пиньейро, 2015, с. 13, 48—49, 66, 89—90.
  7. 1 2 Клини 1957 с.187
  8. Мендельсон 1971 с.165
  9. Это рассуждение заимствовано из Мендельсон 1971 с.160
  10. См., например, Клини 1957 с.188
  11. Мендельсон 1971 с.162
  12. Мендельсон 1971 с.162-163
  13. Мендельсон 1971 с.176
  14. Jones J. P., Undecidable diophantine equations
  15. Martin Davis, Diophantine Equations & Computation  (неопр.). Дата обращения: 17 ноября 2009. Архивировано из оригинала 24 мая 2010 года.
  16. Martin Davis, The Incompleteness Theorem  (неопр.). Дата обращения: 30 ноября 2011. Архивировано 4 марта 2016 года.
  17. К. Подниекс, Теорема Геделя в диофантовой форме  (неопр.). Дата обращения: 17 ноября 2009. Архивировано 10 сентября 2017 года.
  18. Gödel, Kurt. On Formally Undecidable Propositions of the Principia Mathematica and Related Systems. I. — 1931. в книге Davis, Martin (ed.). The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable Problems And Computable Functions. — New York: Raven Press, 1965. — С. 6-8.
  19. 1 2 Гёдель 1931
  20. Stephen Hawking. Godel and the End of the Universe  (неопр.). Дата обращения: 8 апреля 2018. Архивировано из оригинала 29 мая 2020 года.
  21. Михайлова Н. В. Проблема обоснования современной математики в контексте новых философско-методологических кризисов // Философия математики: актуальные проблемы. Математика и реальность. Тезисы Третьей всероссийской научной конференции; 27-28 сентября 2013 г.. — М.: Центр стратегической конъюнктуры, 2013. — С. 187. — 270 с. — ISBN 978-5-906233-39-4. Архивная копия от 16 декабря 2017 на Wayback Machine
  22. Музыкантский А..
  23. Ливио, Марио. Был ли Бог математиком? Глава «Истина в неполноте». — М.: АСТ, 2016. — 384 с. — (Золотой фонд науки). — ISBN 978-5-17-095136-9.
  24. 1 2 Пиньейро, 2015, с. 155—162.

ЛитератураПравить

СсылкиПравить

Библиография — статьи ГёделяПравить

  • 1931, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik 38: 173—198.
  • 1931, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. and On formally undecidable propositions of Principia Mathematica and related systems I in Solomon Feferman, ed., 1986. Kurt Gödel Collected works, Vol. I. Oxford University Press: 144—195. - Оригинальный немецкий текст с параллельным английским переводом, с элементарным введением, написанным Стивеном Клини.
  • Hirzel, Martin, 2000, On formally undecidable propositions of Principia Mathematica and related systems I.. - Современный перевод Марина Херцеля.
  • 1951, Some basic theorems on the foundations of mathematics and their implications in Solomon Feferman, ed., 1995. Kurt Gödel Collected works, Vol. III. Oxford University Press: 304—323.