Это не официальный сайт wikipedia.org 01.01.2023

Теорема Ван-Обеля о четырёхугольнике — Википедия

Теорема Ван-Обеля о четырёхугольнике

Теорема Ван-Обеля (Van Aubel[1] или, в некоторых источниках, Van Obel[2]) — теорема фламандского математика Генри ван Обеля (англ. Henricus Hubertus van Aubel), доказанная в 1878 году[3].

Является частным случаем теоремы Петра — Дугласа — Неймана[1], а из самой теоремы Ван-Обеля следует теорема Тебо.

ФормулировкаПравить

 
Теорема может быть применена к самопересекающимся четырёхугольникам

Если на сторонах произвольного несамопересекающегося четырёхугольника построить квадраты внешним образом и соединить центры противоположных, то полученные отрезки будут равны и перпендикулярны. (См рис.)

ЛитератураПравить

ПримечанияПравить

  1. 1 2 Weisstein, Eric W. van Aubel's Theorem (англ.) на сайте Wolfram MathWorld.
  2. Van Obel Theorem and Barycentric coordinates Архивная копия от 28 января 2010 на Wayback Machine. Автор — Александр Богомольный (англ.)
  3. H. H. van Aubel, (1878), «Note concernant les centres de carrés construits sur les côtés d’un polygon quelconque» (фр.), Nouvelle Correspondance Mathématique 4, 1878, pp. 40-44

См. такжеПравить

СсылкиПравить