Это не официальный сайт wikipedia.org 01.01.2023

Матроид — Википедия

Матроид

(перенаправлено с «Ранг матроида»)

Матроид — классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество.

Аксиоматическое определениеПравить

Матроид — пара ( X , I )  , где X   — конечное множество, называемое носителем матроида, а I   — некоторое множество подмножеств X  , называемое семейством независимых множеств , то есть I   2 X  . При этом должны выполняться следующие условия:

  1. Пустое множество является независимым множеством, т.е. I  .
  2. Все подмножества независимого множества также независимые множества, т.е. если A I   и B A  , то B I  .
  3. Если A , B I   и мощность A больше мощности B, то существует x A B   такой, что B { x } I  .

Базами матроида называются максимальные по включению независимые множества. Подмножества X  , не принадлежащие I  , называются зависимыми множествами. Минимальные по включению зависимые множества называются циклами матроида. Это понятие используется в альтернативном определении матроида.

Определение в терминах цикловПравить

Матроид — пара ( X , C )  , где X   — носитель матроида, а C   — семейство непустых подмножеств X  , называемое множеством циклов матроида, для которых выполняются следующие условия:[1]

  1. Ни один цикл не является подмножеством другого
  2. Если x C 1 C 2  , то C 1 C 2 { x }   содержит цикл

Определение в терминах правильного замыканияПравить

Пусть ( P , )   — частично упорядоченное множество. H : P P   — замыкание в ( P , )  , если

  1. Для любого x из P : H ( x ) x  .
  2. Для любых x, y из P : x y H ( x ) H ( y )  .
  3. Для любого x из P : H ( H ( x ) ) = H ( x )  .

Рассмотрим ( P , ) = ( 2 S , )   случай, когда частично упорядоченное множество — булева алгебра. Пусть A H ( A )   — замыкание A S  .

  1. Замыкание правильно (аксиома правильного замыкания), если ( p A , p H ( A { q } ) ) q H ( A { p } )  
  2. для любого A S   существует такое B A  , что
    1. | B | < +  
    2. H ( B ) = H ( A )  

Пара ( S , A H ( A ) )  , где A H ( A )   — правильное замыкание на ( 2 S , )  , называется матроидом.

ПримерыПравить

  1. Универсальный матроид Un k. Множество X имеет мощность n, независимыми множествами являются подмножества мощностью не больше k. Базы — подмножества мощностью k.
  2. Матроид циклов графа. Множество X — множество ребер графа, независимые множества — ациклические подмножества этих ребер, циклы — простые циклы графа. Базами являются остовные леса графа. Матроид называется графическим, если он является матроидом циклов некоторого графа.[2]
  3. Матроид подмножеств множества ребер графа, таких что удаление подмножества оставляет граф связным.
  4. Матроид коциклов графа. Множество X — множество ребер, коциклы — минимальные множества, удаление которых приводит к потере связности графа. Матроид называется кографическим, если он является матроидом коциклов некоторого графа.[2]
  5. Матричный матроид. Семейство всех линейно независимых подмножеств любого конечного множества векторов произвольного непустого векторного пространства является матроидом.

Определим множество E, как множество состоящее из {1, 2, 3, .., n} — номеров столбцов некоторой матрицы, а множество I, как множество состоящее из подмножеств E, таких, что векторы, определяемые ими, являются линейно независимыми над полем вещественных чисел R. Зададимся вопросом — какими свойствами обладает построенное множество I?

  1. Множество I непусто. Даже если исходное множество E было пусто — E = ∅, то I будет состоять из одного элемента — множества, содержащего пустое. I = { {∅} }.
  2. Любое подмножество любого элемента множества I также будет элементом этого множества. Это свойство понятно — если некоторый набор векторов линейно независим над полем, то линейно независимым будет также любой его поднабор.
  3. Если A, B ∈ I, причем |A| = |B| + 1, тогда существует элемент x ∈ A − B , такой что B ∪ {x} ∈ I.

Докажем, что в рассмотренном примере множество линейно независимых столбцов действительно является матроидом. Для этого достаточно доказать третье свойство из определения матроида. Проведем доказательство методом от противного.

Доказательство. Пусть A, B ∈ I и |A| = |B| + 1. Пусть W будет пространством векторов, охватываемым A ∪ B . Понятно, что его размерность будет не менее |A|. Предположим, что B ∪ {x} будет линейно зависимо для всех x ∈ A − B (то есть третье свойство не будет выполняться). Тогда B образует базис в пространстве W. Из этого следует, что |A| ≤ dim W ≤ |B|. Но так как по условию A и B состоят из линейно независимых векторов и |A| > |B|, получаем противоречие. Такое множество векторов будет являться матроидом.

Дополнительные понятияПравить

  • Двойственным данному матроиду называется матроид, носитель которого совпадает с носителем данного матроида, а базы — дополнения баз данного матроида до носителя. То есть X* = X, а множество баз двойственного матроида — это множество таких B*, что B* = X \ B, где B — база данного матроида.
  • Циклом (или цепью) в матроиде называется такое множество A ⊂ X, что A ∉ I, и для любого B ⊂ A, если B ≠ A, то B ∈ I
  • Рангом матроида называется мощность его баз. Ранг тривиального матроида равен нулю.

Матроид ФаноПравить

 
Матроид Фано

Матроиды с маленьким числом элементов часто изображают в виде диаграмм. Точки — это элементы основного множества, а кривые «протянуты» через каждую трёхэлементную цепь. Диаграмма показывает 3-ранговый матроид, называемый матроидом Фано, пример, который появился в 1935 в статье Уитни.

Название возникло из того факта, что матроид Фано представляет собой проективную плоскость второго порядка, известную как плоскость Фано, чьё координатное поле — это двухэлементное поле. Это означает, что матроид Фано — это векторный матроид, связанный с семью ненулевыми векторами в трехмерном векторном пространстве над полем двух элементов.

Из проективной геометрии известно, что матроид Фано непредставим произвольным множеством векторов в вещественном или комплексном векторном пространстве (или в любом векторном пространстве над полем, чьи характеристики отличаются от 2).

ТеоремыПравить

  • Все базы матроида имеют одинаковую мощность.
  • Матроид однозначно задается носителем и базами.
  • Цикл не может быть подмножеством другого цикла.
  • Если C 1   и C 2   — циклы, то для любого x C 1 C 2 : C 1 C 2 { x }   содержит цикл.
  • Если B   — база и x B  , то B { x }   содержит ровно один цикл.

ПрименениеПравить

ЛитератураПравить

  • Асанов М. О. и др. Дискретная математика: графы, матроиды, алгоритмы. — Ижевск: ННЦ «Регулярная и хаотическая динамика», 2001. — С. 288.
  • Ф. Харари. Теория графов. — Москва: УРСС, 2003. — С. 300. ISBN 5-354-00301-6
  • Новиков Ф. А. Дискретная математика для программистов. — 3-е. — СПб.: Питер, 2008. — С. 101—105. — 384 с. — ISBN 978-5-91180-759-7.

Ссылки и примечанияПравить

https://web.archive.org/web/20080619011117/http://rain.ifmo.ru/cat/view.php/theory/unsorted/matroids-2004

  1. Ф. Харари. Теория графов, с. 57.
  2. 1 2 Ф. Харари. Теория графов, с. 186.