Это не официальный сайт wikipedia.org 01.01.2023

Разделение полупроводниковых пластин на кристаллы — Википедия

Разделение полупроводниковых пластин на кристаллы

Разделение полупроводниковых пластин на кристаллы — этап технологического процесса в электронной промышленности. Разделение полупроводниковых пластин на отдельные кристаллы производится одним из двух основных способов:

  • скрайбированием (надрезанием) и последующим разламыванием;
  • сквозным разрезанием: за один проход пластину прорезают режущим инструментом (например, алмазным диском или проволокой), что позволяет разрезать пластину толщиной до 1 мм и диаметром 100–150 мм со скоростью до 150 мм/с, на глубину 300 мкм и более.

СкрайбированиеПравить

Скрайбирование заключается в нанесении рисок на поверхность пластины в двух взаимно перпендикулярных направлениях алмазным резцом, диском, проволокой или лазерным лучом. Под рисками образуются напряжённые области, по которым происходит разлом пластины после приложения к ней механического воздействия.

Скрайбирование механическим способомПравить

В случае резки пластины резцом в отечественном производстве применялись резцы с алмазным наконечником, с рабочей частью в виде: трёхгранной пирамиды — для резки пластин толщиной от 100 до 250 мкм из германия; четырёхгранной пирамиды с острой вершиной — для резки пластин толщиной от 250 до 500 мкм из кремния; четырёхгранной усечённой пирамиды — для резки пластин одной из четырёх заострённых граней. При резке на кристаллы пластин кремния и германия толщиной 125 мкм минимальный шаг резки составлял 0,4 и 0,5 мм для кремния и германия соответственно, нагрузка резца на пластину — 0,5 ньютона и 0,1 ньютона, соответственно, при скорости нанесения рисок 0,025 м/мин и 0,03 м/мин, соответственно. Глубина рисок после одного хода алмазной резки — 7 мкм, для обеспечения удовлетворительного качества разламывания после резки глубина реза должна быть не менее 2/3 исходной толщины пластины. При скрайбировании большу́ю роль играет соотношение ширины кристаллов и толщины разрезаемой пластины. Оптимальным считается отношение ширины (длины) кристалла и толщины пластины 6:1, минимум - 4:1. Если толщина пластины становится соизмеримой с шириной (длиной) отрезаемого кристалла, то излом пластины после скрайбирования происходит в произвольном направлении.

Скрайбирование лазеромПравить

 
Микрограмма поверхности скола после скрытой нарезки кремниевой пластины толщиной 150 мкм, ср.[1]

Для скрайбирования также применяют энергию лазерного излучения — скрайберные риски создаются испарением полупроводникового материала с поверхности пластины при её перемещении относительно сфокусированного лазерного пучка, имеющего большую мощность излучения. При испарении полупроводникового материала, которое происходит при высокой температуре, в ослабленном канавкой сечении пластины возникают термические напряжения, а сама канавка, являясь узкой (до 25–40 мкм) и глубокой (до 50–100 мкм) по форме, выполняет роль концентратора механических напряжений. Наряду с созданием глубокой разделительной канавки, вследствие отсутствия механического воздействия на рабочей поверхности пластины не образуются микротрещины и сколы, что позволяет поднять скорость скрайбирования до 200 мм/с и выше. Защита и очистка пластины от конденсатов полупроводникового материала обеспечивается:

  • продувкой зоны обработки воздухом;
  • размещением над пластиной прозрачной эластичной ленты, обладающей хорошей адгезией к глобулам испаренного материала и предотвращении их осаждения на поверхность пластины;
  • нанесением плёночного покрытия, например органическим фоторезистом, который потом удаляют.

Возможно также лазерное скрайбирование без удаления материала с поверхности пластины, т.н. «скрытое скрайбирование», и в настоящее время этот метод практически вытеснил испарительный[2]. Для этого применяется ИК-лазер на неодим-иттриевом гранате (Nd:YAG), для длины волны которого кремний (наиболее популярный полупроводник) является полупрозрачным, причём поглощение довольно велико[3]. Короткие импульсы высокой мощности фокусируются в глубине пластины, так, что её материал расплавляется и быстро перекристаллизуется в месте фокусировки, создавая зону напряжения. Несколько проходов лазера с разной глубиной фокусировки создают дорожку напряжённых зон в толще полупроводниковой пластины, по которой она затем легко разламывается.

Разламывание на отдельные кристаллыПравить

Скрайбированную пластину разламывают:

  • механически, приложив к ней изгибающий момент,
    • пластину помещают рабочей поверхностью (скрайберными рисками) вниз на гибкую (например, из резины) опору и с небольшим усилием покатывают последовательно в двух перпендикулярных направлениях, параллельно направлениям скрайбирования, стальным, резиновым валиком диаметром 10-30 мм (или стальным (фторопластовым) клином (призмой) с небольшим радиусом скругления). Гибкая опора деформируется, пластина изгибается в месте нанесения риски и лопается по ним.
  • с помощью ультразвука;
  • термоударом — нагревом и последующим быстрым охлаждением;
  • скрайбированные пластины помещают в конверт из пластичного материала, затем вакуумно-плотно закрывают и откачивают из него воздух — в результате чего возникает механическое воздействие и пластина разламывается.

Таким образом, разламывание происходит в две стадии: вначале на полоски, а затем на отдельные кристаллы. Чтобы полоски или кристаллы в процессе разламывания не смещались относительно друг друга (это может привести к произвольному разламыванию и царапанью кристаллов друг о друга), перед разламыванием пластину покрывают сверху эластичной плёнкой (полиэтиленовой, лавсановой), что позволяет сохранить ориентацию полосок и кристаллов в процессе разламывания. Для сохранения ориентации кристаллов для последующих операций (особенно это важно при автоматизированной сборке) иногда пластину перед разделением на кристаллы закрепляют на специальной подложке — спутнике. Кристаллы между операциями на спутнике закрепляют:

  • на стеклянном спутнике — примораживанием;
  • на пластмассовом — электростатическими силами;
  • на тонкой эластичной плёнке — адгезивными составами. Адгезию слоя подбирают такой, чтобы при разломе кристалл прочно удерживался, а после — снимался без остатков адгезивного вещества.

Ввиду того, что вручную тяжело правильно подобрать необходимое усилие прижима, в современном процессе производства полупроводниковой продукции широко применяется техника и автоматизация. И хотя современное оборудование позволяет выдержать шаг скрайбирования с точностью до ±10 мкм, размеры готовых кристаллов после разламывания имеют значительный разброс, обусловленный влиянием кристаллографической ориентации пластин. При подготовке к сборке перед контролем кристалла его поверхность очищают от различных загрязнений. В технологическом плане более удобно провести эту очистку непосредственно после скрайбирования и перед разламыванием на кристаллы — отходы обработки в виде крошки могут стать причиной появления брака.

Сравнительная таблицаПравить

Характеристики методов разделения полупроводниковых пластин
Параметры Метод разделения
скрайбирование алмазным резцом скрайбирование лазерным лучом резка диском
Обрабатываемый материал
есть ограничения
любой
Максимально возможная скорость обработки кремния, мм/с
60
500
300
Максимальная скорость, обеспечивающая нормальное качество разделения, мм/с
25—60
200
до 150
Глубина реза, мкм
1—5
50—170
10—500
Ширина реза, мкм
1—5
20—35
30—50
Обработка пластины с окислом
не рекомендуется
легко осуществима
возможна
Качество граней кристалла
удовлетворительное
довольно хорошее
Направление движения инструмента
одностороннее
двустороннее
возможно двустороннее
Требования к точности кристаллографической ориентации
жёсткие
умеренные
Загрязнение поверхности пластины продуктами отхода (крошка, испарения)
незначительное
весьма существенное
умеренное
Максимальный выход годных схем после разделения, %
98
99,5

См. такжеПравить

ПримечанияПравить

  1. M. Birkholz; K.-E. Ehwald; M. Kaynak; T. Semperowitsch; B. Holz; S. Nordhoff (2010). “Separation of extremely miniaturized medical sensors by IR laser dicing”. J. Opto. Adv. Mat. 12: 479—483.
  2. Kumagai, M.; Uchiyama, N.; Ohmura, E.; Sugiura, R.; Atsumi, K.; Fukumitsu, K. (August 2007). “Advanced Dicing Technology for Semiconductor Wafer—Stealth Dicing”. IEEE Transactions on Semiconductor Manufacturing. 20 (3): 259—265. DOI:10.1109/TSM.2007.901849.
  3. E. Ohmura, F. Fukuyo, K. Fukumitsu and H. Morita (2006). “Internal modified layer formation mechanism into silicon with nanosecond laser”. J. Achiev. Mat. Manuf. Eng. 17: 381—384.

ЛитератураПравить

  • Готра З. Ю. Справочник по технологии микроэлектронных устройств. — Львов: Каменяр, 1986. — 287 с.
  • Бер А. Ю., Минскер Ф. Е. Сборка полупроводниковых приборов и интегральных микросхем. — М.: «Высшая школа», 1986. — 279 с.

СсылкиПравить