Это не официальный сайт wikipedia.org 01.01.2023

Проблема Гильберта — Арнольда — Википедия

Проблема Гильберта — Арнольда

Проблема Гильберта — Арнольда в теории динамических систем относится к классу задач, связанных с оценкой числа предельных циклов. В ней требуется доказать, что в типичном конечно-параметрическом семействе гладких векторных полей на сфере с компактной базой параметров число предельных циклов равномерно ограничено по всем значениям параметра. Данная проблема исторически связана с 16-й проблемой Гильберта. В настоящий момент (2009) решены только некоторые упрощенные версии проблемы Гильберта — Арнольда.

Математический контекст и постановка задачиПравить

Напомним один из вариантов 16-й проблемы Гильберта. Рассмотрим систему полиномиальных дифференциальных уравнений на плоскости

{ x ˙ = P n ( x , y ) , y ˙ = Q n ( x , y ) , ( x , y ) R 2 ,   (*)

где P n  , Q n   — многочлены степени не выше n  .

Задача (Экзистенциальная проблема Гильберта). Доказать, что для всякого n N   существует такое число H ( n ) <  , что любая система вида (*) обладает не более чем H ( n )   предельными циклами.

Числа H ( n )   называются числами Гильберта для предельных циклов.

Для дальнейшего, нам будет удобно перейти к компактному фазовому пространству и компактной базе параметров. Для этого мы используем приём, известный как компактификация Пуанкаре. Продолжая полиномиальное векторное поле на плоскости до аналитического поля направлений на проективной плоскости мы компактифицируем базу параметров, а затем используя центральную проекцию сферы на проективную плоскость, получаем аналитическое поле направлений на сфере (с конечным числом особых точек). Тем самым, в пространстве всех аналитических полей направлений на сфере выделяется конечно-параметрическое семейство полей с компактной базой параметров, порождаемых полиномиальными системами заданной степени. При этом экзистенциальная проблема Гильберта становится частным случаем следующей (более сильной) гипотезы:

Задача (Проблема глобальной конечности). В любом конечно-параметрическом аналитическом семействе аналитических векторных полей на сфере с компактной базой параметров B   число предельных циклов равномерно ограничено при всех значениях параметра ε B  .

Полиномиальные векторные поля представляют собой естественный пример конечно-параметрического семейства, и на момент постановки 16-й проблемы Гильберта это было, вероятно, единственным известным явным семейством такого рода. Однако со временем подходы изменились, и внимание математиков стали привлекать вопросы не о конкретном семействе, а о свойствах типичных семейств из некоторого класса. В ходе работы над обзором [AAIS] (1986), В. И. Арнольд предложил рассматривать конечно-параметрические семейства гладких векторных полей и сформулировал несколько гипотез на эту тему.

Какие содержательные вопросы можно задавать о предельных циклах в типичных конечно-параметрических семействах? Очевидно, прямой аналог 16-й проблемы Гильберта в данном случае не имеет смысла: у типичной гладкой системы на сфере может быть сколь угодно большое число гиперболических предельных циклов, не разрушаемых малым шевелением, а значит спрашивать о верхней оценке на число предельных циклов в типичном семействе бессмысленно. Однако, гладкий аналог гипотезы глобальной конечности имеет смысл. Он был сформулирован явно Ю. С. Ильяшенко [I94] и получил название проблемы Гильберта — Арнольда:

Задача (Проблема Гильберта — Арнольда). В любом типичном конечно-параметрическом семействе гладких векторных полей на сфере с компактной базой параметров число предельных циклов равномерно ограничено при всех значениях параметра.

Аналитические семейства весьма сложны для изучения — например, они не допускают локальных возмущений в окрестности точки, поэтому нет оснований считать, что решение проблемы Гильберта — Арнольда само по себе позволит доказать гипотезу глобальной конечности, а с ней и 16-ю проблему Гильберта. Однако, исследователи полагают, что изучение гладких векторных полей может дать полезные идеи по поводу 16-й проблемы, а также представляет собой самостоятельную содержательную задачу.

Локальная проблема Гильберта — АрнольдаПравить

 
Полицикл

Благодаря компактности базы параметров и фазового пространства, мы можем свести проблему Гильберта — Арнольда к локальной проблеме изучения бифуркаций специальных вырожденных векторных полей. Напомним необходимые определения.

Определение. Полициклом векторного поля называется циклически занумерованный набор особых точек p 1 , , p n   (возможно, с повторениями) и набор дуг фазовых кривых γ 1 , , γ n   (без повторений), последовательно соединяющих указанные особые точки — то есть дуга γ j   соединяет точки p j   и p j + 1  , где p n + 1 p 1  , j = 1 , , n  .

Определим «цикличность полицикла», то есть количество предельных циклов, рождающихся при его бифуркации:

Определение. Рассмотрим некоторое семейство векторных полей { v ε ( x ) } ε B k  . Пусть при ε = ε   система имеет полицикл γ  . Цикличностью полицикла γ   в семействе { v ε }   называется такое минимальное число μ  , что найдется такая окрестность полицикла U γ   и такая окрестность V   критического значения параметра ( R k V ε  ), что для всех ε V   в области U   одновременно существует не более μ   предельных циклов, причем хаусдорфово расстояние между этими циклами и γ   стремится к нулю при ε ε  .

Таким образом, цикличность зависит не только от векторного поля, содержащего полицикл, но и от семейства, в которое оно включается.

Определение. Бифуркационным числом B ( k )   называется максимальная цикличность нетривиального полицикла в типичном k  -параметрическом семействе гладких векторных полей на сфере.

Определение бифуркационного числа уже не зависит от семейства, а только от размерности пространства параметров. Сформулируем локальную проблему Гильберта — Арнольда:

Задача. Доказать, что для всякого k > 0   существует B ( k ) <  , и найти явную верхнюю оценку.

Из соображений компактности следует, что если в некотором семействе число предельных циклов не ограничено, то они обязаны накапливаться к какому-то полициклу, имеющему тем самым бесконечную цикличность. Таким образом, решение локальной проблемы Гильберта — Арнольда влечет за собой решение глобальной.

Локальная проблема Гильберта — Арнольда решена для k = 1   и k = 2   ( B ( 1 ) = 1  , B ( 2 ) = 2  ). Для k = 3   существует стратегия решения, но она в настоящий момент не завершена. Применение этой же стратегии для оценки B ( 4 )   представляется совершенно безнадежной задачей. Основные результаты в этой области для произвольных k   получены для упрощенной версии локальной проблемы Гильберта—Арнольда, в которой рассматриваются только полициклы, содержащие лишь элементарные особые точки.

Определение. Особая точка называется элементарной, если её матрица линеаризации имеет хотя бы одно ненулевое собственное значение. Полицикл называется элементарным , если все его вершины являются элементарными особыми точками.

Элементарным бифуркационным числом E ( k )   называется максимальная цикличность элементарного полицикла в типичном k  -параметрическом семействе.

Теорема (Ю. С. Ильяшенко, С. Ю. Яковенко, 1995 [IYa]). Для всякого k > 0   существует E ( k ) <  .
Теорема (В. Ю. Калошин, 2003 [K]). Для всякого k > 0   справедлива оценка E ( k ) < 25 k 2  .

ЛитератураПравить