Это не официальный сайт wikipedia.org 01.01.2023

Обобщённый метод моментов — Википедия

Обобщённый метод моментов

Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.

Сущность методаПравить

Пусть распределение случайного вектора x зависит от некоторого вектора неизвестных параметров b (количество параметров — k). Пусть также имеются некоторые функции g(x, b) (их количество q не меньше числа оцениваемых параметров), называемые моментными функциями (или просто моментами), для которых из теоретических соображений предполагается, что

m ( b ) = E [ g ( x , b ) ] = 0.  

Базовая идея метода моментов заключается в использовании в моментных условиях вместо математических ожиданий их выборочные аналоги — выборочные средние

m ^ ( b ) = g ( x , b ) ¯ ,  

которые согласно закону больших чисел при достаточно слабых условиях должны асимптотически сходится к математическим ожиданиям. Поскольку количество условий на моменты в общем случае больше количества оцениваемых параметров, то однозначного решения эта система ограничений не имеет.

Обобщённым методом моментов (ОММ) называется оценка минимизирующая положительно определённую квадратичную форму от выборочных условий на моменты, в которых вместо математических ожиданий используются выборочные средние:

b ^ G M M = arg min b m ^ ( b ) T W m ^ ( b ) ,  

где W — некоторая симметрическая положительно определённая матрица.

Весовая матрица может быть произвольной (с учётом положительной определённости), однако доказано,[источник не указан 2997 дней] что наиболее эффективными являются GMM-оценки с весовой матрицей, равной обратной ковариационной матрице моментных функций W = V g 1  . Это так называемый эффективный GMM.

Однако, поскольку на практике эта ковариационная матрица неизвестна, то применяют двухшаговую процедуру (двухшаговый GMM — Хансен, 1982 г.):

Шаг 1. Оцениваются параметры модели с помощью GMM с единичной весовой матрицей.

Шаг 2. По выборочным данным и найденным на первом шаге значениям параметров оценивают ковариационную матрицу моментных функций V ^ g = g ( x , b ^ ) g ( x , b ^ ) T ¯   и используют полученную оценку в эффективном GMM.

Эту двухшаговую процедуру можно продолжить (итеративный GMM): используя оценки параметров модели на втором шаге ковариационная матрица моментов оценивается снова и повторно применяется эффективный GMM и т. д. итеративно до достижения требуемой точности.

Также возможен подход к численной минимизации целевой функции m ^ T ( b ) V ^ g 1 ( b ) m ^ ( b )   по неизвестным параметрам b  . Тем самым одновременно оцениваются и параметры и ковариационная матрица. Это так называемый непрерывно обновляемый (Continuously Updated) GMM (Хансен, Хитон, Ярон, 1996 год).

Свойства методаПравить

Оценки обобщённого метода моментов при достаточно слабых условиях являются состоятельными, асимптотически нормальными, а оценки эффективного GMM являются также асимптотически эффективными. Можно показать, что

n ( b ^ G M M b ) d N ( 0 , V b ) .  

В общем случае

V b = ( G T W G ) 1 G T W V g W G ( G T W G ) 1  

где G-математическое ожидание матрицы первых производных g по параметрам. В случае эффективного GMM формула ковариационной матрицы существенно упрощается:

V b = G T V g 1 G .  

J-тестПравить

При использовании GMM важным тестом является тест на сверхидентифицирующие ограничения (J-тест). Нулевая гипотеза заключается в том, что условия (ограничения) на моменты имеют место (то есть предположения модели верны). Альтернативная — что они неверны.

Статистика теста равна значению целевой функции GMM, умноженному на количество наблюдений. При нулевой гипотезе

J = n m ^ T ( b ^ ) V ^ g 1 m ^ ( b ^ )   d   χ 2 ( q k ) .  

Таким образом, если значения статистики больше критического значения распределения χ 2 ( q k )   при заданном уровне значимости, то ограничения отвергаются (модель неадекватна), в противном случае модель признается адекватной.

См. такжеПравить

ЛитератураПравить

  • Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. — М.: Дело, 2007. — 504 с. — ISBN 978-5-7749-0473-0.