Это не официальный сайт wikipedia.org 01.01.2023

Модель Бозе — Хаббарда — Википедия

Модель Бозе — Хаббарда

Модель Бозе — Хаббарда даёт примерное описание физики взаимодействия бозонов на пространственной решётке. Она тесно связана с моделью Хаббарда, возникшей в физике твёрдого тела как приближённое описание сверхпроводящих систем и движения электронов между атомами твёрдого кристаллического вещества. Слово Бозе указывает на тот факт, что частица в системе — бозон. Впервые модель была введена Х. Гершем (англ. H. Gersch) и Г. Ноллмэном (англ. G. Knollman)[1] в 1963 году, модель Бозе — Хаббарда может использоваться при изучении систем подобных бозонным атомам в оптической решётке. В противоположность этому, модель Хаббарда применима к фермионам (электронам), а не бозонам. Кроме того, модель обобщается на сочетания Бозе- и Ферми-частиц, в этом случае, в соответствии с гамильтонианом, модель будет называться моделью Бозе — Ферми — Хаббарда.

ГамильтонианПравить

Физика этой модели описывается гамильтонианом Бозе — Хаббарда в представлении вторичного квантования:

H ^ = t i , j ( b i b j + b j b i ) + U 2 i n ^ i ( n ^ i 1 ) μ i n ^ i ,  

где индекс i обозначает суммирование по всем узлам решётки трёхмерной решётки, а i , j   означает суммирование по всем узлам j соседствующим с i. b i   и b i   — бозонные операторы рождения и уничтожения. Оператор n ^ i = b i b i   задаёт число частиц в узле i. Параметр t — это матричный элемент перехода, имеющий смысл подвижности бозонов в решётке. Параметр U описывает локальное взаимодействие частиц находящихся в одном узле, если U>0, то он описывает потенциал отталкивания и если U<0, то описывает притяжение, μ   — химический потенциал. Данный гамильтониан не рассматривает эффекты, которые малы в термодинамическом пределе, а именно, когда размер системы и число узлов стремятся к бесконечности. В то же время плотность узлов остаётся конечной[1].

Размерность Гильбертова пространства модели Бозе — Хаббарда растёт экспоненциально по отношению к числу частиц N и узлов решётки L. Она определяется по формуле: D b = ( N b + L 1 ) ! N b ! ( L 1 ) !  , в то время как в модели Ферми — Хаббарда задаётся формулой: D f = L ! N f ! ( L N f ) ! .   Различные результаты следуют из различия статистики для фермионов и бозонов. Для смеси Бозе- и Ферми-частиц, соответствующее гильбертово пространство в модели Бозе — Ферми — Хаббарда — это прямое тензорное произведение гильбертовых пространств бозонной модели и фермионной модели.

Фазовая диаграммаПравить

При нулевой температуре, модель Бозе — Хаббарда (при отсутствии беспорядка) находится либо в состоянии изолятора Мотта — состояние с малым t/U, либо в сверхтекучем состоянии — с большим t/U[2]. Изолятор Мотта характеризуется целочисленной плотностью бозонов, наличием запрещённой зоны для возбуждений частица-дырка и нулевой сжижаемостью. При наличии беспорядка, присутствует третья фаза «стекло Бозе». Она характеризуется конечной сжижаемостью, отсутствием запрещённой зоны, бесконечной сверхтекучестью.[3] Это изолирующее состояние, несмотря на наличие ширины запрещённой зоны, из-за того, что низкая вероятность туннелирования предотвращает образование возбуждений, которые хотя и близки по энергиям, но пространственно разделены.

Реализация в оптических решёткахПравить

Ультрахолодные атомы в оптических решётках считаются стандартной реализацией модели Бозе — Хаббарда. Возможность изменения параметров модели при помощи простых экспериментальных методов, отсутствие динамики решётки в электронных системах — всё это обеспечивает очень хорошие условия по экспериментальному изучению этой модели.[4][5]

Гамильтониан в формализме вторичного квантования описывает газ из ультрахолодных атомов в оптической решётке в следующем виде:

H = d 3 r ψ ^ ( r ) ( 2 2 m 2 + V l a t t . ( x ) ) ψ ^ ( r ) + g 2 d 3 r ψ ^ ( r ) ψ ^ ( r ) ψ ^ ( r ) ψ ^ ( r ) μ d 3 r ψ ( r ) ψ ^ ( r ) ,  

где V l a t t   — оптический потенциал решётки, g — амплитуда взаимодействия (здесь предполагается контактное взаимодействие), μ   — химический потенциал. Стандартное приближение сильно связанных электронов

ψ ^ ( r ) = i w i α ( r ) b i α  

даёт гамильтонианы Бозе — Хаббарда, если дополнительно допустить, что

w i α ( r ) w j β ( r ) w k γ ( r ) w l δ ( r ) d 3 r = 0  

за исключением случаев i = j = k = l , α = β = γ = δ = 0  . Здесь w i α ( r )   — это функция Ванье  (англ.) (рус. для частицы в потенциале оптической решётки, локализованном вокруг узла i решётки и для α   Блоховской зоны.[6]

Тонкие различия и приближенияПравить

Приближение сильно связанных электронов существенно упрощает вторичное квантование гамильтониана, в то же время вводя ряд ограничений:

  • Параметры U и J на самом деле могут зависеть от плотности, как отброшенные члены, они фактически не равны нулю; вместо одного параметра U, энергия взаимодействия частиц n может быть описана следующим: U n   примерно, но не равно U [6]
  • При рассмотрении быстрой динамики решётки, к гамильтониану Бозе — Хаббарда должны быть добавлены дополнительные условия, так что будет исполняться уравнение Шрёдингера. Оно выходит из зависимости функций Ванье от времени.[7]

Экспериментальные результатыПравить

Квантовые фазовые переходы в модели Бозе — Хаббарда экспериментально наблюдались группой учёных из Греньера (Greiner) и др.[8] в Германии. Параметры взаимодействия U n  , зависящие от плотности, наблюдались группой Эммануэля Блоха  (англ.) (рус..[9]

Дальнейшие приложения моделиПравить

Модель Бозе — Хаббарда также представляет интерес для тех, кто работает в области квантовых вычислений и квантовой информации. С помощью этой модели можно исследовать запутанность ультрахолодных атомов.[10]

Численное моделированиеПравить

При вычислении низкоэнергетических состояний член, пропорциональный n 2 U  , что большое заниание одной стороны маловероятно, позволяя усекать местное гильбертово пространство к состояниям, содержащим не более d <   частиц. Тогда локальная размерность гильбертова пространства будет d + 1.   Размерность полного гильбертового пространства растёт экспоненциально с числом мест в решётке, поэтому компьютерным моделированием огрничиваются системы из 15-20 частиц в 15-20 узлах решётки. Экспериментальные системы содержат несколько миллионов сторон решётки со средним заполнением выше единицы. Для численной симуляции этой модели, алгоритм точной диагонализации представлен в работе под сноской.[11]

Одномерные решётки могут быть рассмотрены методом группы ренормализации плотности матрицы  (англ.) (рус. и связанными с этим методиками, такой как алгоритм Time-evolving block decimation  (англ.) (рус.. Это включает в себя расчёт фонового состояния гамильтониана для систем из тысяч частиц на сторонах решётки и моделирование её динамики, регулирумой уравнение Шрёдингера. Высшие мерности решётки моделировать значительно сложнее при повышении запутанности.[12]

Все мерности могут рассматриваться алгоритмами квантового Монте-Карло  (англ.) (рус., которые дают возможность изучать свойства тепловых состояний гамильтониана, а также конкретное фоновое состояние.

ОбобщенияПравить

Подобные Бозе — Хаббарда гамильтонианы могут быть получены для:

  • систем с плотность-плотность взаимодействиями V n i n j  
  • дальним дипольным взаимодействием [13]
  • внутренней спиновой структурой (спин-1 модели Бозе — Хаббарда) [14]
  • неупорядоченных систем [15]

См. такжеПравить

ПримечанияПравить

  1. 1 2 Gersch H. A., Knollman G. C. Quantum Cell Model for Bosons // Physical Review. — 1963. — 15 января (т. 129, № 2). — С. 959—967. — ISSN 0031-899X. — doi:10.1103/PhysRev.129.959. [исправить]
  2. Kühner T. D., Monien H. Phases of the one-dimensional Bose-Hubbard model // Physical Review B. — 1998. — 1 декабря (т. 58, № 22). — С. R14741—R14744. — ISSN 0163-1829. — doi:10.1103/PhysRevB.58.R14741. [исправить]
  3. Fisher, Matthew P. A.; Grinstein, G.; Fisher, Daniel S. Boson localization and the superfluid-insulator transition (англ.) // Physical Review B : journal. — 1989. — Vol. 40. — P. 546—570. — doi:10.1103/PhysRevB.40.546. — Bibcode1989PhRvB..40..546F.,
  4. Jaksch D., Bruder C., Cirac J. I., Gardiner C. W., Zoller P. Cold Bosonic Atoms in Optical Lattices // Physical Review Letters. — 1998. — 12 октября (т. 81, № 15). — С. 3108—3111. — ISSN 0031-9007. — doi:10.1103/PhysRevLett.81.3108. [исправить]
  5. Jaksch D., Zoller P. The cold atom Hubbard toolbox // Annals of Physics. — 2005. — Январь (т. 315, № 1). — С. 52—79. — ISSN 0003-4916. — doi:10.1016/j.aop.2004.09.010. [исправить]
  6. 1 2 Lühmann Dirk-Sören, Jürgensen Ole, Sengstock Klaus. Multi-orbital and density-induced tunneling of bosons in optical lattices // New Journal of Physics. — 2012. — 13 марта (т. 14, № 3). — С. 033021. — ISSN 1367-2630. — doi:10.1088/1367-2630/14/3/033021. [исправить]
  7. Łącki Mateusz, Zakrzewski Jakub. Fast Dynamics for Atoms in Optical Lattices // Physical Review Letters. — 2013. — 5 февраля (т. 110, № 6). — ISSN 0031-9007. — doi:10.1103/PhysRevLett.110.065301. [исправить]
  8. Greiner M., Mandel O., Esslinger T., Hänsch T. W., Bloch I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. (англ.) // Nature. — 2002. — Vol. 415, no. 6867. — P. 39—44. — doi:10.1038/415039a. — PMID 11780110. [исправить]
  9. Will Sebastian, Best Thorsten, Schneider Ulrich, Hackermüller Lucia, Lühmann Dirk-Sören, Bloch Immanuel. Time-resolved observation of coherent multi-body interactions in quantum phase revivals // Nature. — 2010. — Май (т. 465, № 7295). — С. 197—201. — ISSN 0028-0836. — doi:10.1038/nature09036. [исправить]
  10. Romero-Isart, O; Eckert, K; Rodó, C; Sanpera, A. Transport and entanglement generation in the Bose–Hubbard model (англ.) // Journal of Physics A: Mathematical and Theoretical  (англ.) (рус. : journal. — 2007. — Vol. 40, no. 28. — P. 8019—8031. — doi:10.1088/1751-8113/40/28/S11. — Bibcode2007JPhA...40.8019R. — arXiv:quant-ph/0703177.
  11. Zhang, J M; Dong, R X. Exact diagonalization: The Bose–Hubbard model as an example (англ.) // European Journal of Physics : journal. — 2010. — Vol. 31, no. 3. — P. 591—602. — doi:10.1088/0143-0807/31/3/016. — Bibcode2010EJPh...31..591Z. — arXiv:1102.4006.
  12. Eisert J., Cramer M., Plenio M. B. Colloquium: Area laws for the entanglement entropy // Reviews of Modern Physics. — 2010. — 4 февраля (т. 82, № 1). — С. 277—306. — ISSN 0034-6861. — doi:10.1103/RevModPhys.82.277. [исправить]
  13. Góral K., Santos L., Lewenstein M. Quantum Phases of Dipolar Bosons in Optical Lattices // Physical Review Letters. — 2002. — 12 апреля (т. 88, № 17). — ISSN 0031-9007. — doi:10.1103/PhysRevLett.88.170406. [исправить]
  14. Tsuchiya Shunji, Kurihara Susumu, Kimura Takashi. Superfluid–Mott insulator transition of spin-1 bosons in an optical lattice // Physical Review A. — 2004. — 28 октября (т. 70, № 4). — ISSN 1050-2947. — doi:10.1103/PhysRevA.70.043628. [исправить]
  15. Gurarie V., Pollet L., Prokof’ev N. V., Svistunov B. V., Troyer M. Phase diagram of the disordered Bose-Hubbard model // Physical Review B. — 2009. — 17 декабря (т. 80, № 21). — ISSN 1098-0121. — doi:10.1103/PhysRevB.80.214519. [исправить]