Это не официальный сайт wikipedia.org 01.01.2023

Уравнение с малым параметром — Википедия

Уравнение с малым параметром

(перенаправлено с «Малый параметр»)

Уравнение с малым параметром — скалярное или векторное дифференциальное уравнение, в котором имеется коэффициент, малый по сравнению с другими. Этот параметр может стоять в правой части дифференциального уравнения, при этом говорят о регулярном возмущении уравнения. Кроме того, малый параметр может стоят при старшей производной, в этом случае говорят о сингулярном возмущении.

Регулярно возмущённая задача Коши (начальная задача):

{ d y d t = f ( y , t , ε ) , t ( 0 , T ] y ( 0 , ε ) = y 0 ,

при определённых условиях на правую часть её решение существует, единственно и, кроме того, имеет непрерывную зависимость от малого параметра ε .

Для решения уравнений с малым параметром в математической физике применяются специальные методы. Это связано с наличием различных эффектов, в том числе эффекта пограничного слоя.

Иногда под уравнением с малым параметром понимают и уравнение, малый параметр в котором стоит при производной по нормали в естественном граничном условии.

Часто в приложениях возникают задачи, в которых малый параметр стоит при старшей производной, например:

{ ε d y d t = f ( y , t , ε ) , t ( 0 , T ] y ( 0 , ε ) = y 0 .

Такую задачу принято называть сингулярно возмущённой. Если формально положить малый параметр равным нулю, то первое уравнение системы перестанет быть дифференциальным. По этой причине решение уравнения 0 = f ( y , t , 0 ) может не удовлетворять начальному значению y 0 . Именно в таких задачах может наблюдаться эффект пограничного слоя. Решение вблизи окрестности t = 0 справа испытывает резкое изменение. Эта область характеризуется большими градиентами и её часто называют областью погранслоя. Для решения подобных систем применяют асимптотические методы. Наиболее известны из них — метод Тихонова и метод Васильевой.

ЛитератураПравить