Это не официальный сайт wikipedia.org 01.01.2023

Горизонт — Википедия

Горизонт

(перенаправлено с «Линия горизонта»)

Горизо́нт (др.-греч. ὁρίζων — буквально: ограничивающий) — граница неба с земной или водной поверхностью[1]. По другому определению в понятие включают также видимую часть этой поверхности[2]. Различают горизонт видимый и горизонт истинный. Угол между плоскостью истинного горизонта и направлением на видимый горизонт называют наклонением горизонта (синонимы: понижение горизонта, депрессия горизонта)[3]. На иллюстрации: точка A — точка наблюдения; Н’Н — плоскость истинного горизонта; отрезок AC1 — геометрическая (теоретическая) дальность видимого горизонта; дуга AB1 — географическая дальность видимого горизонта; угол α — наклонение горизонта; B1B2B3B4 — линия видимого горизонта.

Zenith-Nadir-Horizon.svg
Схематичное изображение истинного (H’H), теоретического видимого (C1C2C3C4) и фактического видимого (B1B2B3B4) горизонтов.

Видимый горизонтПравить

Видимым горизонтом называют и линию, по которой небо кажется граничащим с поверхностью Земли, и пространство неба над этой границей, и видимую наблюдателем поверхность Земли, и всё видимое вокруг наблюдателя пространство, до конечных пределов его. Таким же образом понятие горизонта может быть определено для других небесных тел[4].

Синонимы: небосклон, кругозор, небозём, небоскат, закат неба, глазоём, зреймо, завесь, закрой, озор, овидь, окоём, оглядь[5].

Расстояние до видимого горизонтаПравить

 
Схематический рисунок для вычисления расстояния до горизонта: d = ( R + h ) 2 R 2  
  • В случае, если видимый горизонт определять как границу между небом и Землёй, то рассчитать геометрическую дальность видимого горизонта можно, воспользовавшись теоремой Пифагора:
d = ( R + h ) 2 R 2  
Здесь d — геометрическая дальность видимого горизонта, R — радиус Земли, h — высота точки наблюдения относительно поверхности Земли[6].
В приближении, что Земля — идеально круглая и без учёта рефракции эта формула даёт хорошие результаты вплоть до высот расположения точки наблюдения порядка 100 км над поверхностью Земли.
Принимая радиус Земли равным 6371 км и отбрасывая из-под корня величину h2, которая не слишком значима ввиду малого отношения h/R, получим ещё более простую приближённую формулу[7]:
d 113 h ,  
где d и h в километрах или
d 3 , 57 h ,  
где d в километрах, а h в метрах.
Ниже приведено расстояние до горизонта при наблюдении с различных высот[8]:
Высота над поверхностью Земли h Расстояние до горизонта d Пример места наблюдения
1,75 м 4,7 км стоя на земле
25 м 17,9 км 8-этажный дом
50 м 25,3 км колесо обозрения
150 м 43,8 км воздушный шар
2 км 159,8 км гора
10 км 357,3 км самолёт
350 км 2114,0 км МКС
 
Геометрическое расстояние до горизонта d   в зависимости от высоты над поверхностью h   точки наблюдения.
График построен по формуле: d = ( R + h ) 2 R 2 ,   R   — радиус Земли, принят равным 6371 км.
Для облегчения расчётов дальности горизонта в зависимости от высоты точки наблюдения и с учётом рефракции составлены таблицы и номограммы. Действительные значения дальности видимого горизонта могут значительно отличаться от табличных, особенно в высоких широтах, в зависимости от состояния атмосферы и подстилающей поверхности[9][10].
Поднятие (снижение) горизонта относится к явлениям, связанным с рефракцией (рисунок 2). При положительной рефракции видимый горизонт поднимается (расширяется), географическая дальность видимого горизонта увеличивается по сравнению с геометрической дальностью, видны предметы, обычно скрытые кривизной Земли.
Большие градиенты температуры создаются при сильном нагреве земной поверхности солнечными лучами, часто в пустынях, в степях. Большие градиенты могут возникнуть и в средних, и даже в высоких широтах в летние дни при солнечной погоде: над песчаными пляжами, над асфальтом, над обнажённой почвой. Такие условия являются благоприятными для возникновения нижних миражей[11].
При отрицательной рефракции видимый горизонт снижается (сужается), не видны даже те предметы, которые видны в обычных условиях.
  • В случае, если видимый горизонт определять как всё видимое вокруг наблюдателя пространство, до конечных пределов его, то расстояние до видимого горизонта, например, в лесу — это максимальное расстояние на которое уходит взгляд, пока не упрётся в деревья (несколько десятков метров), а для наблюдаемой Вселенной расстояние до видимого горизонта (то есть до самых далёких звёзд, которые мы можем наблюдать) составит около 13—14 млрд световых лет[12].
Кстати: Космический горизонт (горизонт частиц) — это и мысленно воображаемая сфера с радиусом, равным расстоянию, которое свет прошёл за время существования Вселенной, и все множество точек Вселенной, находящихся на этом расстоянии[13].

Дальность видимостиПравить

 
Формула и рисунок для вычисления геометрической дальности видимости.
Щёлкните по изображению, чтобы увеличить его.

На рисунке справа дальность видимости объекта определяют по формуле

D B L = 3.57 ( h B + h L )  ,

где D B L   — дальность видимости в километрах,
h B   и h L   — высоты точки наблюдения и объекта в метрах.

Если учесть земную рефракцию, то формула примет вид:

D B L < 3.86 ( h B + h L ) .  

То же самое, но D B L   — в морских милях:

D B L < 2.08 ( h B + h L ) .  

 
Диаграмма Струйского: Наблюдатель на высоте 10 м (шкала C) увидит утес высотой 50 м (шкала A) с расстояния примерно 21 морской мили (шкала B).

Для приближённого расчёта дальности видимости объектов применяют номограмму Струйского (см. илл.): на двух крайних шкалах номограммы отмечают точки, соответствующие высоте точки наблюдения и высоте объекта, затем проводят через них прямую и на пересечении этой прямой со средней шкалой получают дальность видимости объекта[14].

На морских картах, в лоциях и других навигационных пособиях дальность видимости маяков и огней указывается для высоты точки наблюдения равной 5 м[9]. Если высота точки наблюдения иная, то вводится поправка[15].

Горизонт на ЛунеПравить

 
Земля над горизонтом Луны

Нужно сказать, что расстояния на Луне очень обманчивы. Благодаря отсутствию воздуха удалённые предметы видятся на Луне более чётко и поэтому всегда кажутся ближе.

Лунный горизонт практически вдвое ближе земного. При этом расстояние до лунного горизонта зрительно определить крайне сложно по причине отсутствия атмосферы[16], а также объектов известного размера, по которым можно бы судить о масштабе.

Истинный горизонтПравить

Истинный горизонт — мысленно воображаемый большой круг небесной сферы, плоскость которого перпендикулярна отвесной линии в точке наблюдения. Аналогично общему понятию, истинным горизонтом может называться не круг, а окружность, то есть линия пересечения небесной сферы и плоскости, перпендикулярной отвесной линии.

Синонимы: математический горизонт, астрономический горизонт.

Искусственный горизонт — прибор, которым пользуются для определения истинного горизонта.

Например, истинный горизонт легко определить, если поднести к глазам стакан с водой так, чтобы уровень воды был виден как прямая линия[17].

Горизонт в философииПравить

Понятие горизонта в философию вводит Эдмунд Гуссерль, а Гадамер определяет его следующим образом: «Горизонт — поле зрения, охватывающее и обнимающее все то, что может быть увидено из какого-либо пункта»[18]

См. такжеПравить

ПримечанияПравить

  1. Значения слова «горизонт» на сайте gramota.ru  (неопр.). Дата обращения: 25 февраля 2018. Архивировано 11 августа 2020 года.
  2. Статья «Горизонт» в Большой советской энциклопедии
  3. Ермолаев Г. Г., Андронов Л. П., Зотеев Е. С., Кирин Ю. П., Черниев Л. Ф. Морское судовождение / под общей редакцией капитана дальнего плавания Г. Г. Ермолаева. — издание 3-е, переработанное. — М.: Транспорт, 1970. — 568 с.
  4. Изучение Солнечной системы  (неопр.). Горизонт. Космос и астрономия. Архивировано из оригинала 4 марта 2016 года.
  5. Даль В. И. Толковый словарь живого великорусского языка. — М.: ОЛМА Медиа Групп, 2011. — 576 с. — ISBN 978-5-373-03764-8.
  6. Верюжский Н. А. Мореходная астрономия: Теоретический курс. — М.: РКонсульт, 2006. — 164 с. — ISBN 5-94976-802-7.
  7. Перельман Я. И. Горизонт // Занимательная геометрия. — М.: Римис, 2010. — 320 с. — ISBN 978-5-9650-0059-3.
  8. Вычислено по формуле «расстояние = 113 корней из высоты», таким образом, влияние атмосферы на распространение света не учитывается и предполагается, что Земля имеет форму шара.
  9. 1 2 Мореходные таблицы (МТ-2000). Адм. № 9011 / главный редактор К. А. Емец. — СПб.: ГУН и О, 2002. — 576 с.
  10. Мир путешествий и приключений  (неопр.). Расчёт расстояния до горизонта и прямой видимости онлайн. Архивировано 25 ноября 2019 года.
  11. Всё о космосе  (неопр.) (недоступная ссылка — история). Какой горизонт дальше?. Архивировано 3 февраля 2012 года.
  12. Лукаш В. Н., Михеева Е. В. Физическая космология. — М.: Физико-математическая литература, 2010. — 404 с. — ISBN 5922111614.
  13. Климушкин Д. Ю.; Граблевский С. В.: Космология  (неопр.). Космический горизонт (2001). Архивировано из оригинала 24 марта 2012 года.
  14. Учебник судоводителя любителя  (неопр.). Глава VII . Навигация. Архивировано 14 марта 2016 года.
  15. Яхтенная энциклопедия  (неопр.). Видимый горизонт и дальность видимости. Архивировано из оригинала 3 марта 2016 года.
  16. Skeptic.net  (неопр.). Были ли американцы на Луне?. Архивировано из оригинала 14 марта 2016 года.
  17. Запаренко Виктор. Большая энциклопедия рисования Виктора Запаренко. — М.: АСТ, 2007. — 240 с. — ISBN 978-5-17-041243-3.
  18. Истина и метод. С.358

ЛитератураПравить