Лемма Огдена
В теории формальных языков, лемма Огдена предоставляет расширение гибкости леммы о разрастании для контекстно-свободных языков.
Лемма Огдена утверждает, что если язык L контекстно-свободен, то существует некоторое число p > 0 (где p может быть, а может и не быть длиной накачки), такое что для любой строки w длины не меньше p из L и для любой «разметки» p или более позиций в w, w может быть представлено в виде
- w = uvxyz
где u, v, x, y, и z — строки, такие что
- x содержит по меньше мере одну помеченную позицию,
- либо и u и v содержат помеченную позицию, либо её содержат и y и z,
- vxy содержит не более p отмеченных позиций, и
- uvixyiz принадлежит L для любого i ≥ 0.
Лемма Огдена может использоваться для доказательства того, что данный язык не является контекстно-свободным, в случаях когда леммы о разрастании для контекстно-свободных языков недостаточно. Примером может быть язык {aibjckdl : i = 0 или j = k = l}. Она также полезна для доказательства существенной неоднозначности некоторых языков.
Заметим, что если все позиции отмечены, данная лемма эквивалентна лемме о накачке для контекстно-свободных языков.
См. такжеПравить
В статье не хватает ссылок на источники (см. рекомендации по поиску). |