Конденсация Доджсона
В математике, конденсация Доджсона — это метод вычисления определителей. Метод назван в честь его создателя Чарльза Доджсона (более известного как Льюис Кэрролл). Метод заключается в понижении порядка определителя специальным образом до порядка 1, единственный элемент которого и является искомым определителем.
Общий методПравить
Алгоритм может быть описан с помощью следующих четырёх этапов:
1. Пусть — заданная квадратная матрица размера . Запишем матрицу таким образом, чтобы она содержала только ненулевые элементы во внутренней части, то есть , если . Это может быть сделано, например, с помощью операции добавления к строке матрицы некоторой другой строки, умноженной на некоторое число.
2. Запишем матрицу размера , состоящую из миноров порядка 2 матрицы . В явном виде:
3. Применяя этап № 2 к матрице , запишем матрицу размера , разделив соответствующие элементы полученной матрицы на внутренние элементы матрицы :
4. Пусть и . Повторяем этап № 3 до тех пор, пока не получим матрицу порядка 1. Её единственный элемент и будет искомым определителем.
ПримерыПравить
Без нулейПравить
Пусть необходимо вычислить определитель
Составим матрицу из миноров порядка 2:
Составим матрицу :
Элементы матрицы мы получили, разделив элементы полученной матрицы
на внутренние элементы матрицы
Повторяем этот процесс, пока не получим матрицу порядка 1:
Делим на внутреннюю часть матрицы размера , то есть на , получаем .
и есть искомый определитель исходной матрицы.
С нулямиПравить
Запишем необходимые матрицы:
Возникает проблема. Если мы продолжим этот процесс, то возникнет необходимость деления на 0. Однако мы можем переставить строки исходной матрицы и повторить процесс:
Таким образом, определитель исходной матрицы 36.
Тождество Доджсона и корректность конденсации ДоджсонаПравить
Тождество ДоджсонаПравить
Доказательство метода конденсации Доджсона основано на тождестве, известном, как тождество Доджсона (тождество Якоби).
Пусть — квадратная матрица, и для всех обозначим минор матрицы , который получается вычёркиванием -й строки и -го столбца. Аналогично для обозначим минор, который получается из матрицы вычёркиванием -й и -й строк и -го и -го столбцов. Тогда
Доказательство тождества ДоджсонаПравить
Доказательство корректности конденсации ДоджсонаПравить
ЛитератураПравить
- C. L. Dodgson. Condensation of Determinants, Being a New and Brief Method for Computing their Arithmetical Values // Proceedings of the Royal Society of London. — 1866-1867. — Т. 15. — С. 150–155.
- А. Л. Новый метод вычисления определителей // Математическое просвещение. Вторая серия. — 1958. — Вып. 3. — С. 194.
- David Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, MAA Spectrum, Mathematical Associations of America, Washington, D.C., 1999.
- David Bressoud and Propp, James, How the alternating sign matrix conjecture was solved, Notices of the American Mathematical Society, 46 (1999), 637—646.
- D. Knuth (1996) Overlapping Pfaffians, Electronic Journal of Combinatorics, 3, no. 2.
- Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Proof of the Macdonald conjecture, Inventiones Mathematicae, 66 (1982), 73—87.
- Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Alternating sign matrices and descending plane partitions, Journal of Combinatorial Theory, Series A, 34 (1983), 340—359.
- Robbins, David P., The story of 1, 2, 7, 42, 429, 7436, …, The Mathematical Intelligencer, 13 (1991), 12—19.
- Doron Zeilberger, Dodgson’s determinant evaluation rule proved by two-timing men and women. Elec. J. Comb. 4 (1997).
СсылкиПравить
- Weisstein, Eric W. Condensation (англ.) на сайте Wolfram MathWorld.