Дважды косо отсечённый ромбоикосододекаэдр
Два́жды ко́со отсечённый ромбоикосододека́эдр[1] — один из многогранников Джонсона (J81, по Залгаллеру — М13+М6).
Дважды косо отсечённый ромбоикосододекаэдр | |||
---|---|---|---|
(3D-модель) | |||
Тип | многогранник Джонсона | ||
Свойства | выпуклый | ||
Комбинаторика | |||
Элементы |
|
||
Грани |
10 треугольников 20 квадратов 10 пятиугольников 2 десятиугольника |
||
Конфигурация вершины |
5x4(4.5.10) 3x2+6x4(3.4.5.4) |
||
Классификация | |||
Обозначения | J81, М13+М6 | ||
Группа симметрии | C2v |
Составлен из 42 граней: 10 правильных треугольников, 20 квадратов, 10 правильных пятиугольников и 2 правильных десятиугольников. Каждая десятиугольная грань окружена пятью пятиугольными и пятью квадратными; среди пятиугольных граней 2 окружены двумя десятиугольными и тремя квадратными, 6 — десятиугольной и четырьмя квадратными, остальные 2 — пятью квадратными; среди квадратных граней 1 окружена двумя десятиугольными и двумя пятиугольными, 8 — десятиугольной, двумя пятиугольными и треугольной, остальные 11 — двумя пятиугольными и двумя треугольными; каждая треугольная грань окружена тремя квадратными.
Имеет 90 рёбер одинаковой длины. 10 рёбер располагаются между десятиугольной и пятиугольной гранями, 10 рёбер — между десятиугольной и квадратной, 40 рёбер — между пятиугольной и квадратной, остальные 30 — между квадратной и треугольной.
У дважды косо отсечённого ромбоикосододекаэдра 50 вершин. В 20 вершинах сходятся десятиугольная, пятиугольная и квадратная грани; в 30 вершинах сходятся пятиугольная, две квадратных и треугольная грани.
Дважды косо отсечённый ромбоикосододекаэдр можно получить из ромбоикосододекаэдра, отсекши от того два не противолежащих друг другу пятискатных купола (J5). Вершины полученного многогранника — 50 из 60 вершин ромбоикосододекаэдра, рёбра — 90 из 120 рёбер ромбоикосододекаэдра; отсюда ясно, что у дважды косо отсечённого ромбоикосододекаэдра тоже существуют описанная и полувписанная сферы, причём они совпадают с описанной и полувписанной сферами исходного ромбоикосододекаэдра.
Метрические характеристикиПравить
Если дважды косо отсечённый ромбоикосододекаэдр имеет ребро длины , его площадь поверхности и объём выражаются как
Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен
радиус полувписанной сферы (касающейся всех рёбер в их серединах) —
ПримечанияПравить
- ↑ Залгаллер В. А. Выпуклые многогранники с правильными гранями / Зап. научн. сем. ЛОМИ, 1967. — Т. 2. — Cтр. 24.
СсылкиПравить
- Weisstein, Eric W. Дважды косо отсечённый ромбоикосододекаэдр (англ.) на сайте Wolfram MathWorld.