Геометрический род
Геометрический род — это базовый бирациональный инвариант[en] pg алгебраических многообразий и комплексных многообразий.
ОпределениеПравить
Геометрический род может быть определён для несингулярных[en] комплексных проективных многообразий и, более общо, для комплексных многообразий, как число Ходжа hn,0 (равное h0,n согласно двойственности Серра), то есть, как размерность канонической линейной системы[en] плюс единица.
Другими словами, для многообразия V комплексной размерности[en] n это значение равно числу линейно независимых голоморфных n-форм на многообразии V[1]. Это определение как размерность пространства
тогда переносится на любое базовое поле, если Ω брать как пучок кэлеровых дифференциалов, а степень равна внешнему произведению, каноническому линейному расслоению[en].
Геометрический род является первым инвариантом последовательности инвариантов , носящих название плюрижанр[en] (или кратный род).
Случай кривыхПравить
В случае комплексных многообразий несингулярные кривые являются римановыми поверхностями. Алгебраическое определение рода согласуется с топологическим понятием рода. На несингулярной кривой каноническое линейное расслоение имеет степень .
Понятие рода присутствует заметно в утверждении теоремы Римана — Роха (см. также теорему Римана — Роха для поверхностей) и формуле Римана — Гурвица[en]. По теореме Римана — Роха неприводимая плоская кривая степени d имеет геометрический род
где s — число особых точек, нужным образом подсчитанных.
Если C является неприводимой (и гладкой) поверхностью в проективной плоскости[en], определяемой полиномиальным уравнением степени d, то её нормальное линейное расслоение является скручивающим пучком Серра , так что по формуле присоединения[en] каноническое линейное расслоение поверхности C задаётся равенством .
Род сингулярных многообразийПравить
Определение геометрического рода переносится классическим образом на сингулярные кривые C путём констатации, что является геометрическим родом нормализации C′. То есть, поскольку отображение является бирациональным, определение расширяется бирациональным инвариантом.
См. такжеПравить
ПримечанияПравить
- ↑ Данилов, Шокуров, 1998, с. 57—58.
ЛитератураПравить
- Griffiths P., Harris J. Principles of Algebraic Geometry. — Wiley Interscience, 1994. — С. 494. — (Wiley Classics Library). — ISBN 0-471-05059-8.
- Данилов В.И., Шокуров В.В. Алгебраическая геометрия-1. — 1998. — Т. 23. — (Итоги науки и техники. Современные проблемы математики. Фундаментальные направления.).
Для улучшения этой статьи желательно:
|